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1 Introduction

One rationale for a social security system is the provision of social insurance for risks
that are not easily insured in private markets. The Economic Report of the President
(2004, Ch. 6) articulates this view. It claims that the provision of social insurance
for labor income risk over the life cycle is one of the main problems that justi¯es a
government role in old-age entitlement programs. It argues that labor income is risky
but is not easily insured. One reason given for why insurance is di±cult is that labor
income is partly under an individual's control by the choice of unobserved e®ort or
unobserved labor hours. It then argues that the US social security system provides
valuable insurance through a progressive retirement bene¯t based on lifetime earnings.
Given this argument, we ¯nd it natural to ask how far a stylized version of the US

social security system is from an e±cient system? An answer would give the maximum
potential e±ciency gain to superior social insurance arrangements. This can also be
viewed as a measure of ine±ciency. There are at least two reasons why this question
is di±cult to answer. First, there are many sources of risk to consider and social
security systems have distinct bene¯ts tailored to these risks. Second, there are other
mechanisms in the US economy, such as income taxation, that are important sources of
state-contingent taxes and that may have an important insurance role. Thus, analyzing
the ine±ciency of social security quickly becomes an analysis of the ine±ciency of the
tax-transfer system as a whole.
This paper provides a simple benchmark analysis. This simpli¯cation is gained by

(i) analyzing one component of the US social security system, the retirement compo-
nent, in isolation, (ii) treating social security together with income taxation as the
entire tax-transfer system and (iii) focusing on a single but very important source of
risk. The risk that is examined here is idiosyncratic labor-productivity risk. We focus
on this risk for two reasons. First, individual workers experience substantial variation
in wage rates which are not related to systematic life-cycle variation or to aggregate
°uctuations.1 Second, this risk is a natural way to model labor income as risky but
di±cult to insure.
The degree of ine±ciency of the US social security system together with the in-

come tax system is determined by comparing an agent's ex-ante, expected utility in
the model of the US social insurance system to the maximum ex-ante, expected utility
that a planner could achieve for the agent. In the model of the US economy it is as-
sumed that there is a risk-free asset for transferring resources over time and that social

1Heathcote, Storresletten and Violante (2004) examine annual wage data for US males. They divide
(log) wage rates into components capturing life-cycle, business-cycle and idiosyncratic wage variation. They
further divide the idiosyncratic component into permanent, persistent and transitory subcomponents and
¯nd substantial variation in each subcomponent. See Card (1994) for related work.

2



security together with income taxation are the only means for transferring resources
across states (i.e across an agent's labor-productivity histories). The planner faces two
constraints. Allocations must use no more resources in expected present value terms
than are used in the US system and must be incentive compatible. The incentive prob-
lem arises from the fact that the planner only observes an agent's earnings. Earnings
equal the product of labor productivity and labor hours. Thus, the planner does not
know whether earnings of an agent are low because labor productivity is low or because
labor hours are low. Under these circumstances, the Revelation Principle implies that
the allocations between an agent and a planner that can be achieved are precisely those
that are incentive compatible.2

Preview of Results:

1. The maximum e±ciency gain that can be achieved in moving from the allocation
under the US social insurance system to the utility possibility frontier is equivalent
to a 6:8 percent increase in consumption at each age when there is no labor-
productivity risk but a 10:5 percent increase with risk. This occurs when labor-
productivity di®erences are set to the permanent di®erences estimated in US
data. Only a small part of this e±ciency gain can be achieved by changing the
allocation of consumption, ¯xing the labor allocation.

2. In the absence of risk, standard intuition (see Feldstein (1996, p. 4) among
others) is that ine±ciency is increasing in the magnitude of distortionary taxation
as e±cient allocations equate marginal rates of substitution and transformation.
This is consistent with our ¯nding that, in the absence of risk, ine±ciency is 0:1
percent when there is social security and no income taxation but is 6:8 percent
when social security and income taxation are both present. Marginal earnings
taxes in the model are positive at all ages when only social security is analyzed,
but are substantially higher when social security and income taxation are both
present. Social security leads to positive net marginal tax rates as the proportional
social security tax rate on earnings exceeds the present value of marginal social
security bene¯ts incurred from additional earnings at all ages.

3. In the presence of permanent labor-productivity risk, e±cient allocations do not
equate marginal rates of substitution and transformation. Thus, the standard
intuition for the ine±ciency of social security and income taxation needs to be re-
considered. When utility functions are additively separable between consumption

2It is also useful to view this model as one where a planner faces a cohort of ex-ante identical agents that
are large in number and that experience idiosyncratic but not aggregate risk. The planner either extracts
a prespeci¯ed present value of resources from the cohort or gives a prespeci¯ed present value of resources
to the cohort. Section 3.3 of the paper discusses assumptions such that these are two interpretations of the
same model.
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and labor, then in an e±cient allocation the intertemporal marginal rate of substi-
tution of consumption equals the intertemporal marginal rate of transformation
(i.e. the gross interest rate), but the marginal rate of substitution of consump-
tion for labor is below labor productivity for all agent's but the agent with the
highest productivity shock. The model of the US social insurance system distorts
the intertemporal marginal rate of substitution of consumption below the gross
interest rate because marginal income tax rates are positive. The model also dis-
torts the marginal rate of substitution of consumption for labor below an agent's
labor productivity. The magnitude of this wedge typically increases at each age
as the productivity shock increases. This is because marginal income tax rates
increase with income and because marginal net social security tax rates increase
with earnings for all agents who are below the maximum taxable earnings level in
the social security system. The magnitude of the wedges in an e±cient allocation
have precisely the opposite pattern.

4. The Economic Report of the President (2004) takes the view that a social se-
curity system with a progressive bene¯t formula and with roughly proportional
tax rates is likely to provide valuable social insurance. In the model economies
with permanent labor-productivity risk, social security and income taxation are
progressive in the sense that the present value of net-taxes paid as a fraction of
the present value of earnings increases as the present value of earnings increases.
We ¯nd that e±cient allocations also have progressive average lifetime tax rates.
In fact, these tax rates are substantially more progressive in an e±cient allocation
than under the model of the US social insurance system.

The paper is organized as follows. Section 2 highlights related research. Section 3
presents the modeling framework. Section 4 sets model parameters. Section 5 presents
the main results of the paper. Section 6 discusses the results and highlights some
important extensions.

2 Related Research

This paper builds upon the social security and optimal contract theory literatures. We
highlight the papers from these literatures which are most closely related to our work.
To address the role of social security in the provision of social insurance, one needs

a model with some risk that is not easily insured in private markets. Imrohoroglu et al
(1995), Huang et al (1997), Huggett and Ventura (1999) and Storesletten et al (1999)
were among the early works to quantitatively analyze social security systems in the
presence of idiosyncratic earnings risk. This paper shares much in common with these
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papers in that it uses computational methods and adopts the modeling of the US social
security system developed in Huggett and Ventura (1999).3

Our work is also related to the e±ciency gains literature. This literature determines
whether or not speci¯c policy changes produce Pareto improvements and calculates
the magnitude of any e±ciency gains. For example, the classic work by Auerbach and
Kotliko® (1987, Ch. 10) computes e±ciency gains from more closely linking marginal
social security bene¯ts to marginal social security taxes in a model which abstracts from
aggregate and idiosyncratic risk. Our work computes e±ciency gains in a model with
idiosyncratic, labor-productivity risk that is privately observed. In fact, we compute
the maximum e±ciency gain, which we label the ine±ciency of the social insurance
system. Relatively few papers in the e±ciency gains literature calculate how far social
insurance systems are from e±cient allocations.4

This paper also builds upon the optimal contract theory literature that empha-
sizes privately-observed, labor-productivity risk. This literature began with Mirrlees
(1971). Diamond and Mirrlees (1978, 1986) extended this framework to consider the
optimal disability insurance problem.5 Two papers from this literature which are sim-
ilar in spirit to our work are Hopenhayn and Nicolini (1998), who consider the optimal
unemployment insurance problem, and Golosov and Tsyvinski (2004), who consider
the optimal disability insurance problem. These papers are similar to ours in that
allocations produced by stylized models of US institutions are compared to e±cient
allocations both at a theoretical and at a quantitative level. Our work di®ers in that
we analyze the retirement component of the US social security system and in that we
consider the interaction of social security with the US income-tax system.
This paper is also related to work in dynamic contract theory, such as Green (1987),

Spear and Srivastava (1987), Thomas and Worrall (1990), Atkeson and Lucas (1992)
and Fernandes and Phelan (2000). In this work recursive methods are used to charac-
terize solutions to dynamic contracting problems. An important issue is the nature
of tax-transfer systems that implement solutions to dynamic contracting problems

3Imrohoroglu et al (2000) survey the social security literature that emphasizes idiosyncratic earnings risk.
4Lindbeck and Persson (2003) review the literature on e±ciency gains and social security reform. We

mention four papers from this literature which di®er in the risk analyzed. Hubbard and Judd (1987) de-
termine whether social security improves upon no social security system when there is mortality risk and
private markets do not provide annuities. Krueger and Kubler (2003) determine whether there are e±ciency
gains to adopting a pay-as-you-go social security system in place of private pensions when there is aggregate
productivity risk. Huang et al (1997) ask whether there are e±ciency gains from two speci¯c changes in
social security when agents face idiosyncratic mortality and earnings risk. Nishiyama and Smetters (2004)
ask whether there are e±ciency gains in moving from the US system to an individual accounts system when
agents face idiosyncratic wage risk.

5Salanie (1997) reviews the contract theory literature. Diamond (2003) relates work in contract theory
to the design of social security systems.
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with labor-productivity risk. Albanesi and Sleet (2003), Battaglini and Coate (2004),
Golosov and Tsyvinski (2004) and Kocherlakota (2003) present early results which are
useful for thinking about this issue.

3 Framework

3.1 Preferences

An agent's preferences over consumption and labor allocations over the life cycle are
given by a calculation of ex-ante, expected utility.

E[
JX
j=1

¯j¡1u(cj ; lj)] =
JX
j=1

X
sj2Sj

¯j¡1u(cj(sj); lj(sj))P (sj)

Consumption and labor allocations are denoted (c; l) = (c1; :::; cJ ; l1; :::; lJ). Con-
sumption and labor at age j are functions cj : S

j ! R+ and lj : S
j ! [0; 1] mapping

j-period shock histories sj ´ (s1; :::; sj) 2 Sj into consumption and labor decisions. The
set of possible j-period histories is denoted Sj = fsj = (s1; :::; sj) : si 2 S; i = 1; :::; jg,
where S is a ¯nite set of shocks. P (sj) is the probability of history sj . An agent's
labor productivity in period j, or equivalently at age j, is given by a function !(sj ; j)
mapping the period shock sj and the agent's age j into labor productivity.

3.2 Incentive Compatibility

It is assumed that labor productivity is observed only by the agent. The principal
observes the output of the agent which equals the product of labor productivity and
work time. In this context, the Revelation Principle (see Mas-Colell et al (1995, Prop.
23.C.1)) implies that the allocations (c; l) that can be achieved between a principal and
an agent are precisely those that are incentive compatible.
We now de¯ne what it means for an allocation to be incentive compatible. For

this purpose, we de¯ne the report function ¾ ´ (¾1; :::; ¾J), which is composed of
period report functions ¾j that map shock histories s

j 2 Sj into S. The truthful
report function is denoted ¾¤ and has the property that ¾¤j (s

j) = sj in any period
for any j-period history. An allocation (c; l) is incentive compatible (IC) provided
that the truthful report function always gives at least as much expected utility to the
agent as any other feasible report function.6 The expected utility of an allocation

6A report function ¾ is feasible for an allocation (c; l) provided that in any period in any history an
agent's true labor productivity !(sj ; j) is always large enough to produce the output required by a report
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(c; l) under a report function ¾ is denoted W (c; l;¾; s1).
7 This is de¯ned below, where

ŝj ´ (¾1(s1); :::; ¾j(sj)) denotes the j-period reported history when the true history is
sj . Using this notation, (c; l) is IC provided W (c; l;¾¤; s1) ¸W (c; l;¾; s1);8s1;8¾.

W (c; l;¾; s1) ´
JX
j=1

X
sj2Sj

¯j¡1u(cj(ŝj);
lj(ŝ

j)!(¾j(s
j); j)

!(sj ; j)
)P (sj js1)

3.3 Decision Problems

This paper focuses on two decision problems: the social security problem and the
private information planning problem. These problems have the same objective but
di®erent constraint sets. V ss and V pp denote the maximum ex-ante, expected utility
achieved in these problems.

V ss ´ max(c;l)2¡ss E[
PJ
j=1 ¯

j¡1u(cj ; lj)]

¡ss = f(c; l) :PJ
j=1

cj
(1+r)j¡1 ·

PJ
j=1

(!(sj ;j)lj¡Tj(xj ;!(sj ;j)lj))
(1+r)j¡1

and xj+1 = Fj(xj ; !(sj ; j)lj ; cj); x1 ´ 0g

V pp ´ max(c;l)2¡pp E[
PJ
j=1 ¯

j¡1u(cj ; lj)]

¡pp = f(c; l) : E[PJ
j=1

(cj¡!(sj ;j)lj)
(1+r)j¡1 ] · Cost and (c; l) is IC g

The constraint set ¡ss for the social security problem is speci¯ed by a tax function
Tj and a law of motion Fj for a vector of state variables xj . The tax function states the
agent's tax payment at age j as a function of period earnings !(sj ; j)lj and the state
variables xj . A negative tax is a transfer. The social security problem requires that
the present value of consumption is no more than the present value of labor earnings
less net taxes for any labor-productivity history.8 The next section demonstrates that
this abstract formulation is able to capture important features of the US social security
and income tax system.
The constraint set ¡pp for the planning problem has two restrictions. First, the

expected present value of consumption less labor income cannot exceed some speci¯ed

(i.e. 0 · lj(ŝj)!(¾j(sj); j) · !(sj ; j);8j;8sj , where ŝj ´ (¾1(s1); :::; ¾j(sj))).
7W (c; l;¾; s1) is de¯ned only for !(sj ; j) > 0. Later in the paper, we will set labor productivity to zero

beyond a retirement age. It is then understood that labor supply is set to zero at those ages.
8The budget set can equivalently be formulated as a sequence of budget restrictions where the agent has

access to a risk-free asset, starts life with zero units of this asset and must end life with non-negative asset
holding.
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value, denoted Cost. Present values are computed with respect to an exogenous real
interest rate r. Second, allocations (c; l) must be incentive compatible (IC).
Ex-ante expected utility can be ordered in these problems so that V pp ¸ V ss.

This occurs when Cost in the planning problem is selected to equal the expected
present value of taxes incurred in a solution (css; lss) to the social security problem (i.e.
Cost ´ E[

PJ
j=1¡Tj(xj ; !(sj ; j)lssj )=(1 + r)j¡1]). The argument is based on showing

that if the allocation (css; lss) achieves the maximum in the social security problem,
then (css; lss) is also in ¡pp. Since (css; lss) satis¯es the present value condition in ¡ss,
then it also satis¯es the expected present value condition in ¡pp. Thus, it remains
to argue that (css; lss) is incentive compatible. However, the fact that (css; lss) is an
optimal choice for the agent in the social security problem implies that it is incentive
compatible.
To conclude this section, we raise two issues concerning how to interpret solutions

to the planning problem. First, is a solution to the planning problem a Pareto e±cient
allocation? Solutions to the planning problem are Pareto e±cient allocations between
a risk-averse agent and a risk-neutral principal with discount factor 1=(1 + r) when
the utility possibility frontier is downward sloping. It is straightforward to show that
the frontier is downward sloping when the agent's period utility function u(cj ; lj) is
additively separable and is strictly increasing and continuous in consumption. Second,
does a solution to the planning problem also solve the problem of maximizing ex-ante,
expected utility of a large cohort of ex-ante identical agents subject to incentive com-
patibility and to the requirement that the realized present value cost to the planner not
exceed some prespeci¯ed level? The assumption here is that agents experience idiosyn-
cratic but not aggregate risk. The contract theory literature mentioned in section 2
imposes the requirement that a present value condition or a market clearing condition
must hold in equilibrium but not necessarily for any conceivable (non-equilibrium) re-
ports that these agents could make.9 Under this requirement, a solution to the planning
problem is a solution to the planning problem with a large cohort of ex-ante identical
agents.

3.4 US Tax-Transfer System

The tax function and law of motion (Tj ; Fj) are now speci¯ed to capture features of the
US social security system together with the US federal income tax system. Speci¯cally,
the tax function Tj is the sum of social security taxes T ssj and income taxes T incj . The

state variable xj = (x
1
j ; x

2
j ) in Tj has two components: x

1
j is an agent's average earnings

9See Mas-Colell and Vives (1991) for a discussion of this issue and for results on implementation in
exchange economies with a continuum of agents.
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up to period j and x2j is an agent's asset holdings.

Tj(xj ; !(sj ; j)lj) = T
ss
j (x

1
j ; !(sj ; j)lj) + T

inc
j (x1j ; x

2
j ; !(sj ; j)lj)

3.4.1 Social Security

The model social security system taxes an agent's labor income before a retirement
age R and pays a social security transfer at and after the retirement age. Speci¯cally,
taxes are proportional to labor earnings (!(sj ; j)lj) for earnings up to a maximum
taxable level emax. The social security tax rate is denoted by ¿ . Earnings beyond the
maximum taxable level are not taxed. After the retirement age, a transfer b(x1) is
given that is a ¯xed function of an accounting variable x1. The accounting variable
is an equally-weighted average of earnings before the retirement age R (i.e. x1j+1 =

[minf!(sj ; j)lj ; emaxg+ (j ¡ 1)x1j ]=j). The earnings that enter into the calculation of
x1j are capped at a maximum level emax. After retirement, the accounting variable
remains constant at its value at retirement.

T ssj (x
1
j ; !(sj ; j)lj) =

½
¿ minf!(sj ; j)lj ; emaxg : j < R

¡b(x1j ) : j ¸ R

The relationship between average past earnings x1 and social security bene¯ts b(x1)
in the model is shown in Figure 1. Bene¯ts are a piecewise-linear function of average
past earnings. Both average past earnings and bene¯ts are normalized in Figure 1 so
that they are measured as multiples of average earnings in the economy. The ¯rst
segment of the bene¯t function in Figure 1 has a slope of :90, whereas the second and
third segments have slopes equal to :32 and :15. Thus, the bene¯t function bends
over. The bend points in Figure 1 occur at 0:21 and 1:29 times average earnings in
the economy. The variable emax is set equal to 2:42 times average earnings. The bend-
points and the maximum earnings emax are set at the actual multiples of mean earnings
used in the US social security system. The slopes of the bene¯t function are also set
to those in the US social security system.10 Figure 1 says that the social security

10Under the US Social Security system, a person's monthly retirement bene¯t is based on a person's
averaged indexed monthly earnings (AIME). For a person retiring in 2002, this bene¯t equals 90% of the
¯rst $592 of AIME, plus 32% of AIME between $592 and $3567, plus 15% of AIME over $3567. Dividing
these \bend points" by average earnings in 2002 and multiplying by 12 gives the bend points in Figure 1.
Bend points change each year based on changes in average earnings. The maximum taxable earnings from
1998- 2002 averaged 2:42 times average earnings. All these facts, as well as average earnings data, come
from the Social Security Handbook (2003). The retirement bene¯t above is for a single-person household.
The US system o®ers a spousal bene¯t that we abstract from.
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retirement bene¯t payment is about 45 percent of average earnings for a person whose
average earnings over the lifetime equals mean earnings in the economy.
The speci¯cation of the model social security system captures many features of the

old-age component of the US social security system. Two di®erences are the following:

(i) The accounting variable in the actual US system is an average of the 35 highest
earnings years, where the yearly earnings measure which is used to calculate the
average is capped at a maximum earnings level.11 In the model, earnings are
capped at a maximum level just as in the US system, but earnings in all pre-
retirement years are used to calculate average earnings.

(ii) In the actual US system the age at which bene¯ts begin can be selected within
some limits with corresponding \actuarial" adjustments to bene¯ts. In the model
the age R at which retirement bene¯ts are ¯rst received is ¯xed.

3.4.2 Income Taxation

Income taxes in the model economy are determined by applying an income tax function
to a measure of an agent's income. The empirical tax literature has calculated e®ective
tax functions (i.e. the empirical relationship between taxes actually paid and economic
income).12 We use tabulations from the Congressional Budget O±ce (2004, Table 3A
and Table 4A) for the 2001 tax year to specify the relation between US average e®ective
federal income tax rates and income. Figure 2 plots average e®ective tax rates for two
types of households: head of household is 65 or older and head of household is younger
than 65. The horizontal axis in Figure 2 measures income in 2001 dollars. Figure 2
shows that US average federal income tax rates increase strongly in income.
In the model economy, we choose income taxes T incj (x1j ; x

2
j ; !(sj ; j)lj) before and

after the retirement age R to approximate the average tax rates in Figure 2. We
proceed in three steps. First, we approximate the US data in 2001 dollars with a
continuous function. Speci¯cally, we use the quadratic function passing through the
origin that minimizes the squared deviations of the tax function from data. This
gives average tax functions before and after the retirement age. Second, we express
model income in 2001 dollars.13 Third, the average tax rates on model income are

11The 35 highest years are calculated on an indexed basis in that indexed earnings in a given year equal
actual nominal earnings multiplied by an index. The index equals the ratio of mean earnings in the economy
when the individual turns 60 to mean earnings in the economy in the given year. In e®ect, this adjusts
nominal earnings for in°ation and real earnings growth.
12See, for example, Gouveia and Strauss (1994).
13This is done using the ratio between the average US economy earnings and average model earnings.

The ¯gure for US average earnings is $32; 922. This comes from the bene¯t calculation section of the Social
Security Handbook (2003).
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given by the function estimated in the ¯rst step after expressing model income in
2001 dollars. Model income equals the sum of labor income !(sj ; j)lj , asset income
x2jr and social security transfer income bj(x

1
j ). Asset income is calculated as follows:

x2j+1 = !(sj ; j)lj + x
2
j (1 + r)¡ Tj(x1j ; x2j ; !(sj ; j)lj)¡ cj .

4 Parameter Values

The benchmark results of the paper are based on the parameter values in Table 1.
There are J = 61 model periods in an agent's lifetime. This corresponds to real-life
ages 20 to 80. The retirement age (i.e. age at which retirement bene¯ts are ¯rst
received) occurs in model period R = 46 which corresponds to a real-life retirement
age of 65. This is the current age at which full bene¯ts are received in the US system.
The social security tax rate ¿ is set to equal 10:6 percent of earnings. This is the
combined employee-employer tax for old-age and survivor's insurance component of
social security. The social security bene¯t function b(x) and the income tax function
T incj are given by Figure 1 and Figure 2. The previous section discussed how these
functions were selected.
An agent's labor productivity is given by a function !(sj ; j) = ¹jsj . The term ¹j

captures the systematic variation in mean labor productivity with age. We set ¹j equal
to the US cross-sectional, mean-wage pro¯le for males from Heathcote et al (2004). This
is displayed in Figure 3, where we normalize ¹1 to equal 1. We impose that an agent is
not able to work at age 65 or afterwards. The term sj captures idiosyncratic variation in
labor productivity. We consider two possibilities for the stochastic structure of shocks:
perfectly permanent shocks and purely temporary shocks. In the case of permanent
shocks, an agent is \born" at age j = 1 with a realization of the permanent shock which
remains with the agent over the life cycle. The agent receives no subsequent shocks. In
the case of temporary shocks, an agent draws a shock each period independently from a
¯xed distribution. In both cases the distribution of shocks is a discrete approximation
to a lognormal distribution (i.e. log(sj) » N(¡¾2=2; ¾2)).14
Heathcote et al (2004) have decomposed the idiosyncratic component of variation

of log wages of US males into the sum of permanent, persistent and purely temporary
components. They estimate that the variance of the purely temporary component of
log wage shocks is ¾2 = 0:074 and that the variance of the permanent component of
log wage shocks is ¾2 = 0:109.15 These estimates will lie in the range of the variances

14We approximate the lognormal distribution with 5 equally-spaced points in logs in the interval [¡3¾; 3¾].
Probabilities are set to the area under the normal distribution, where midpoints between the approximating
points de¯ne the limits of integration. This follows Tauchen (1986).
15The estimates cited in the text are the average values of the variances of the respective shock components.
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¾2 for temporary and permanent shocks that we consider in the next section.

Table 1: Parameter Values

De¯nition Symbol Value

Model Periods J J = 61

Retirement Period R R = 46

Social Security Tax ¿ ¿ = :106

Bene¯t Function b(x) Figure 1

Income Tax Function T inc Figure 2

Labor Productivity !(sj ; j) !(sj ; j) = ¹jsj
log(sj) » N(¡¾2=2; ¾2)

Mean Productivity Pro¯le ¹j Figure 3

Interest Rate r r = 0:042

Discount Factor ¯ ¯ = 1:0=(1 + r)

Preferences u(c; l) u(c; l) = c(1¡½)
(1¡½) + Á

(1¡l)
(1¡°)

(1¡°)

½ = 1; ° = 3:2856
Á see text

One important restriction on the utility function u(c; l) is the assumption of additive
separability. Much of the literature on dynamic contract theory with a labor decision
referenced in section 2 is based on this assumption. We make use of this assumption
when we design a procedure to compute solutions to the planning problem.16 The
discount factor ¯ and the real interest rate r are set so that ¯(1 + r) = 1. Under
these assumptions, the consumption pro¯le over the life cycle is °at in a solution to the

These values come from Heathcote et al (2004, Table 2) after weighting the variance in 1967 by the average
factor loadings from 1967-1996.
16It is used in Theorem A.3 in the Appendix to establish which incentive constraints bind and to develop

a two-stage approach to solve the recursive-dual problem. The algorithm to compute solutions to the social
security problem does not make use of additive separability.
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planning problem, when there is no labor-productivity risk. We set the real interest
rate equal to 4:2 percent. This is the average real return over the period 1946- 2001 to
an equally-weighted portfolio of stock and long-term bonds (see Siegel (2002, Tables
1-1 and 1-2)).

In the benchmark model, we set u(c; l) = c(1¡½)=(1¡ ½) + Á (1¡l)(1¡°)
(1¡°)

. This choice
implies a constant elasticity of intertemporal substitution of consumption equal to
² = ¡1=½ and a constant Frisch elasticity of leisure with respect to the wage equal to
²leisure = ¡1=°.
We now discuss how we set the parameters ½ and °. We make use of estimates based

on micro data and the assumption that the period utility function for consumption
and labor is additively separable. The estimates of ² surveyed in Browning et al (1999,
Table 3.1) range from ¡0:25 to ¡1:56. This would suggest a coe±cient ½ ranging from
below 1:0 to 4:0. In the benchmark model we set ½ = 1 (i.e. u(c) = log(c)) and
later examine the sensitivity of the results to higher values. We note that log utility
is widely used in general equilibrium models for balanced growth considerations. The
literature that estimates the Frisch elasticity of labor supply (see Browning et al (1999,
Table 3.3)) is useful for setting °. For the preferences under consideration, the Frisch
elasticities of labor and leisure are related as follows: ²labor = ¡²leisure(1 ¡ l)=l. We
set the parameter ° to match an estimate of the Frisch elasticity of male labor supply.
Domeij and Floden (2004, Table 5) estimate that ²labor = 0:49, using annual data
for US males.17 We choose ° = 3:2856 to match this estimate of the labor elasticity
when labor l in the model equals the average fraction of time worked in the US.18 The
remaining parameter Á is set so that, given all other model parameters, the average
fraction of time worked in the model equals the average value in the US economy. When
the variances for the permanent and temporary shocks are set to the point estimates
discussed above, the value Á equals 0:5887 for the permanent shock case and 0:5481
for the temporary shock case.

17Using US data, they ¯nd that the estimated elasticity is larger when the data set excludes households
with small amounts of liquid assets. The estimate in the text is for households with liquid assets equal to
at least one month's wages. This estimate is higher than many in the literature but still within the range of
estimates surveyed by Browning et al (1999, Table 3.3).
18The average fraction of time worked in the US is 0:3832. This equals average hours worked divided by

available work time. Average hours worked comes from Heathcote et al (2004, Table 1). Available work time
equals 16 hours per day times 365 days per year.
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5 Results

5.1 Quantitative Assessment of Ine±ciency

This section quanti¯es the ine±ciency of the US system when labor-productivity shocks
are temporary or permanent. The magnitude of the ine±ciency is the percentage
increase ® in consumption in the allocation (css; lss) for the social security problem
so that ex-ante expected utility is the same as in an allocation (cpp; lpp) solving the
private information planning problem, holding the expected present value of resources
equal in both problems. This calculation is shown below. This calculation also has
the interpretation of the maximum e±ciency gain that can be achieved in moving to
the utility possibility frontier, ¯xing the resources given to the planner. The results of
this section are based on computing solutions to the social security problem and the
planning problem. Computational methods are described in detail in Appendix A.

E[
JX
j=1

¯j¡1u(cssj (1 + ®); l
ss
j )] = E[

JX
j=1

¯j¡1u(cppj ; l
pp
j )] ´ V pp

Figure 4 highlights the ine±ciency of the US social insurance system in the bench-
mark model for a range of values for the variance of log labor-productivity shocks.
This measure of ine±ciency is increasing in the variance of the shocks. This holds
both when one considers social security without an income tax system and when social
security and income taxation are combined together.
To quantify the size of the ine±ciency of the US system, one would need an estimate

of the variance of the shocks to log wages. As described in the previous section,
Heathcote et al (2004) estimate that ¾2 = 0:074 for temporary shocks and that ¾2 =
0:109 for permanent shocks. Thus, a one standard deviation shock increases wages
by about 33 percent in the permanent shock case and 27 percent in the temporary
shock case. Using these estimates, the ine±ciency of the combined social security and
income tax system is 10:5 percent of consumption in the permanent shock case and 8:2
percent in the temporary shock case. Figure 4 also shows that the ine±ciency measure
is substantially larger when income taxation and social security are analyzed together
than when income taxation is abstracted from.

5.2 Decomposing Ine±ciency

We now decompose the ine±ciency measure in Figure 4. Speci¯cally, we contrast the
ine±ciency of the allocation (css; lss) under the US social insurance system with the
ine±ciency of the allocation (c¤; lss). The (c¤; lss) allocation maximizes the agent's ex-
ante expected utility, holding labor ¯xed at lss and imposing both the incentive compat-
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ibility and the resource constraints from the planning problem.19 This decomposition
highlights the degree to which ine±ciency can be reduced by choosing consumption
optimally given an allocation of labor. It also highlights the remaining e±ciency gains
that can be obtained by adjusting labor and further adjusting consumption all the way
to an e±cient allocation. Expressed more ¯guratively, this decomposition describes
the reduction in ine±ciency from better distributing a cake of ¯xed size versus the
reduction in ine±ciency resulting from changing the size of the cake and changing the
mix of labor used to produce it.
Figure 5 presents the results of this decomposition for the case of permanent shocks.

We ¯nd that a change in the labor allocation is essential in order to achieve the bulk
of the potential e±ciency gains. They cannot be obtained by superior consumption
allocations, given the labor allocation produced by the model of the US social insur-
ance system. Intuitively, the gains from a superior consumption allocation come from
compressing the distribution of consumption across labor-productivity histories at each
age and from superior consumption smoothing over time for a given history. Since the
utility function is concave in consumption at each age, compressing consumption will
lead to an increase in expected utility. To stay within the class of incentive compatible
allocations, this compression can only occur up to the point where the incentive con-
straints bind. Thus, for example, perfect equality of consumption will not be incentive
compatible when the labor allocation calls for output di®erences across agents.

5.3 Sources of Ine±ciency

We now try to further understand what lies behind the results in Figure 4. We focus
¯rst on the case of no labor productivity risk and then consider productivity risk.

5.3.1 No Labor-Productivity Risk

In an e±cient allocation marginal rates of substitution and transformation are equated
in the absence of risk. Given additive separability (i.e. u(c; l) = u(c) + v(l)), two of
these necessary conditions can be rewritten as follows: u0(cj) = ¯u0(cj+1)(1 + r) and

19We decompose ine±ciency by computing the value ® solving the equation below. The allocation c¤

solves the maximization problem below.

E[
JX
j=1

¯j¡1u(c¤j (1 + ®); l
ss
j )] = E[

JX
j=1

¯j¡1u(cppj ; l
pp
j )]

maxc2¡(lss;Cost)E[
PJ
j=1 ¯

j¡1u(cj ; lssj )]

¡(lss; Cost) ´ fc : (c; lss) is IC and E[PJ
j=1

(cj¡!(sj ;j)lssj )
(1+r)j¡1 ] · Costg
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¡v0(lj)=u0(cj) = !(sj ; j). In the allocation under the model social insurance system,
an optimizing agent equates marginal rates of substitution to the after-tax marginal
rates of transformation. Thus, in the absence of risk, non-zero marginal tax rates on
asset or labor income lead to ine±cient allocations in the model.
We now highlight the marginal tax rate on labor earnings. The focus on earnings

is motivated by Figure 5 which shows that changing the labor allocation is key to
achieving the bulk of the e±ciency gains in Figure 4. Figure 6 graphs this marginal
tax rate over the life cycle. Consider ¯rst the model without an income tax. In this
model the marginal tax on earnings decreases with age.20 Why is this? The marginal
tax rate equals the social security tax rate ¿ less the present value of the marginal
bene¯ts incurred from an extra unit of earnings. Thus, the marginal tax rate decreases
with age because the present value of marginal social security bene¯ts incurred by an
extra unit of earnings increases as an agent ages. This occurs for two reasons. First,
since the retirement bene¯t in the model is based on average earnings, a one unit
increase in earnings in any period raises the social security retirement payment by the
same amount.21 Second, since the real interest rate in the model is positive, the present
value of these marginal bene¯ts incurred is greater towards the end of the working life
cycle than at the beginning.
Now consider the model with income taxation and social security. Figure 6 shows

that the income tax substantially increases the marginal tax rate on labor earnings.
In fact, the marginal tax rate on earnings now increases with age over the early part
of the working life cycle. Intuitively, this occurs when income over the life cycle is
hump-shaped since average and marginal income tax rates increase with income (see
Figure 2).
Figure 7 highlights labor allocations over the life cycle. In an e±cient allocation

labor is hump-shaped. This follows directly from the ¯rst-order necessary conditions.
Speci¯cally, the assumption that ¯(1+ r) = 1 implies that consumption is °at over the
life cycle. The necessary condition for labor (i.e. ¡v0(lj)=u0(cj) = !(sj ; j)) then implies
that labor is hump-shaped when labor productivity is hump-shaped (see Figure 3) and
when the disutility of labor v is concave. Under the model social insurance system, the
labor allocation is lower early in life than in the e±cient allocation. This occurs not
because marginal tax rates on earnings are relatively high early in life. Instead, this

20Clearly, introducing other features of the US social security system (e.g. the spousal bene¯t or the fact
that bene¯ts are based on the 35 highest earnings years) would a®ect the patterns in Figure 6. The results
in Figure 6 for the case of no income tax are similar to the marginal social security tax rates calculated by
Feldstein and Samwick (1992, Table 1).
21Clearly, this is sensitive to abstracting from growth in average, economy-wide earnings as discussed in

section 3.4.1. Appendix B extends the model to allow for growth in average, economy-wide earnings and the
indexing of individual earnings to economy-wide earnings.
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can be attributed to the e®ect that positive marginal income tax rates have in inducing
consumption to fall with age by making future consumption relatively more expensive
in terms of current resources.

5.3.2 Labor-Productivity Risk

We now try to understand the nature of the ine±ciency displayed in Figure 4 for
economies where labor-productivity risk is permanent. We start by looking at marginal
rates of substitution between consumption and labor. Figure 8 highlights the wedge
between this marginal rate of substitution and the corresponding marginal rate of
transformation. More speci¯cally, Figure 8 graphs the ratio of the marginal rate of
substitution to the agent's labor productivity at each age over the life cycle for each
of the ¯ve possible values of the permanent shock. Figure 8a shows that in an e±cient
allocation this marginal rate of substitution is below an agent's labor productivity
for all agents but the agent with the highest permanent shock. Furthermore, within
age groups the magnitude of this wedge between rates of substitution and transforma-
tion is greatest for agents with the lowest labor productivity and decreases as labor
productivity increases.
The pattern of the wedges in the model social insurance system is quite di®erent.

Figure 8b shows that this marginal rate of substitution is below an agent's labor pro-
ductivity for all agents at all ages. In addition, within age groups the wedge typically
increases as an agents labor productivity increases. This is precisely the opposite of
the results from Figure 8a.
The wedge is smallest for low productivity agents for two reasons. First, these

agents have realtively low incomes and marginal income tax rates are relatively low at
low income levels (see Figure 2). Second, these agents expect to be on the steep part
of the social security bene¯t function (see Figure 1) but face the same social security
tax rate on earnings as all agents who are below the maximum taxable earnings level.
As earnings increase both the marginal income and marginal net social security tax
rate increase. This holds until earnings hit the maximum taxable earnings under social
security. This occurs in Figure 8b for the highest productivity shock agent at age
j = 14. Beyond this age the highest shock agent faces a zero marginal net social
security tax.
It seems plausible that the increases in ine±ciency as labor productivity risk in-

creases are related to the pattern of wedges. Speci¯cally, as risk increases from the
non risk case, the e±cient wedge is always zero for the high shock agent but the wedge
in the model is increasing as risk increases. This leads high shock agents to not work
enough compared to e±cient hours of work.
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5.4 Tax Implementing E±cient Allocations

² Tax implemtation
² Ave Lifetime Tax Rates

Figure 9 plots average lifetime net-tax rates. The net-tax rate equals the ratio
of the present value of earnings less consumption to the present value of earnings.
Thus, this tax rate is positive when in present-value terms the agent is a net source of
resources to the social insurance system. Recall from section 4 that there are exactly
¯ve equally-spaced values of the log of the permanent productivity shock log(s) on the
interval [¡3¾ to 3¾]. Thus, there are ¯ve points in Figure 9. In the allocations we
compute it is always the case that labor earnings (i.e. the product of productivity and
work time) are increasing in the level of an agent's permanent productivity shock.
We highlight three properties from Figure 9. First, high productivity agents work

more under an e±cient allocation than under the US system with the opposite pattern
holding for low productivity agents. This is implied by the fact that the present value
of earnings increase in an e±cient allocation for high productivity agents compared
to the US system. Clearly, the opposite pattern occurs for low productivity agents.
Second, the net-tax rate is increasing in the agent's productivity both in the US system
and in an e±cient allocation. Thus, both allocations o®er insurance in the sense that
the net-present value of transfers decreases as labor productivity increases. Third, the
net-tax rate increases much more sharply in an e±cient allocation than under the US
social insurance allocation. In fact, the net-tax rate under the US system is always
positive but under an e±cient allocation it varies from less than ¡150 percent to about
33 percent.

6 Discussion
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A Appendix: Computational Methods

Appendix A contains three sections. Section A.1 provides theory for computing solutions to
the private information planning problem. Section A.2 describes our methods for computing
solutions to the planning problem and the US social security problem. FORTRAN programs
that compute solutions to these problems are available upon request. Section A.3 proves all
Theorems from section A.1.

A.1 Private Information Planning Problem: Theory

Theory for analyzing the private information planning problem is laid out in three steps. Step
1 states a dual problem with the feature that solutions to the dual problem are solutions to the
original planning problem. Step 2 provides an equivalent formulation of incentive compatibility
that is useful for a recursive statement of the dual problem. Step 3 formulates the dual prob-
lem as a dynamic programming problem and indicates how to further simplify this problem
for computational purposes. Throughout this Appendix, we specialize the labor-productivity
function to be !(sj ; j) = sj solely to simplify expressions.

A.1.1 Primal and Dual Problems

Primal Problem: maxE[
P

j ¯
j¡1u(cj ; lj)]

subject to (1) (c; l) is IC and (2) E[
P

j(cj ¡ sjlj)=(1 + r)j¡1] · Cost

Dual Problem: minE[
P
j(cj ¡ sjlj)=(1 + r)j¡1]

subject to (1) (c; l) is IC and (2) E[
P

j ¯
j¡1u(cj ; lj)] ¸ u¤

Theorem A1: Assume u(c; l) = u(c) + v(l), u(c) is continuous on R1++, u(c) is strictly
increasing and u(0) = ¡1. If (c; l) solves the Dual Problem, given u¤ > ¡1, then (c; l) solves
the Primal Problem, given Cost ´ E[Pj

(cj¡sj lj)
(1+r)j¡1 ].

Proof: See Appendix A.3

Theorem A2 provides conditions which are equivalent to the incentive compatibility conditions.22

Theorem A2: For the case of independent shocks, (c; l) is IC if and only if 9fwj(sj¡1)gJ+1j=2

such that restrictions (a)-(b) hold:
(a) u(cj(s

j¡1; sj); lj(sj¡1; sj)) + ¯wj+1(sj¡1; sj) ¸
u(cj(s

j¡1; s0j); lj(s
j¡1; s0j)(s

0
j=sj)) + ¯wj+1(s

j¡1; s0j);8(sj¡1; sj);8s0j
(b) wj(s

j¡1) = E[u(cj(sj); lj(sj)) + ¯wj+1(sj)jsj¡1];8j and wJ+1(sJ) = 0
where sj denotes the history of truthful reports up to period j.
Proof: See Appendix A.3.

22These results are adaptations of Green (1987, Lemma 1-2).
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A.1.2 Recursive Formulation of the Dual Problem

Following Green (1987) and Spear and Srivastava (1987), a recursive formulation of the Dual
Problem is provided below for the case of temporary shocks. The function Cj(w) is the mini-
mum expected discounted cost of obtaining utility w. The notation (ci; li; wi) describes period
consumption, labor and future utility delivered when shock si occurs and the agent tells the
truth. There are N shock values that occur with probability (¼1; :::; ¼N ). Shocks are ordered
so that s1 < s2 < ::: < sN .

Recursive Dual Problem: Cj(w) = min
P

i[ci ¡ lisi + (1 + r)¡1Cj+1(wi)]¼i
subject to

(i) w =
P
i[u(ci; li) + ¯wi]¼i;

(ii) u(ci; li) + ¯wi ¸ u(cj ; lj(sj=si)) + ¯wj ;8i; j

Theorem A3 establishes some basic properties of the incentive constraints.23 These prop-
erties are used to simplify the computation of the Recursive Dual Problem. The following
compact notation is used: Cij ´ u(ci; li) + ¯wi ¡ [u(cj ; lj(sj=si)) + ¯wj]. Cii¡1 ¸ 0 is called
a local downward incentive constraint, whereas Ci¡1i ¸ 0 is called a local upward incentive
constraint. Theorem A3 says that (a) the local upward and downward constraints convey all
the IC restrictions (Theorem A3(ii)), (b) if all the local downward constraints bind then all
local upward constraints also hold (Theorem A3(iii)) and (c) in a solution to the Recursive Dual
Problem all local downward constraints bind (Theorem A3(iv)). Theorem A3(i) also delivers
the standard insight that incentive compatibility alone implies that \earnings" or \output" lisi
increases as the shock index i increases. This relies on additive separability.

Theorem A3: Assume u(c; l) = u(c) + v(l), u and v are strictly concave, u is increasing, v
is decreasing and that shocks are independent. Then

(i) Incentive compatibility implies that lisi is increasing in i.

(ii) Cii¡1; Ci¡1i ¸ 0; i = 2; :::;N imply that Cij ¸ 0 8i; j.
(iii) Cii¡1 = 0; i = 2; :::; N imply that Ci¡1;i ¸ 0; i = 2; :::;N and that Ci¡1;i > 0 whenever

lisi > li¡1si¡1.

(iv) In a solution to the Recursive Dual Problem all local downward constraints bind.

Proof: See Appendix A.3.

To compute solutions to the Recursive Dual Problem it is useful to solve two subproblems:
DP 1 and DP 2. These problems reduce the dimensionality of the choice variables by making
use of additive separability of the objective. Dimensionality can be further reduced by solving
DP 1' in place of DP 1. DP 1' solves out for utility zi in terms of promised utility w and the
labor plan (l1; :::; lN ). This uses the fact, established in Theorem A3, that in a solution to the

23Theorem A3 is parallel to results which hold w/o a labor-leisure decision (e.g. Thomas and Worrall
(1990)) and to results in the literature following Mirrlees (1971).
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recursive dual problem all local downward constraints hold with equality and that when these
constraints hold with equality they imply all the restrictions of incentive compatibility.

Subproblems:

(DP 1) Cj(w) = min
P
i[¡lisi + Ĉj(zi))]¼i

(1) w =
P
i[v(li) + zi]¼i

(2) v(li) + zi ¸ v(lj(sj=si)) + zj ;8i; j
(DP 1') Cj(w) = min

P
i[¡lisi + Ĉj(fi(l1; :::; lN ;w)))]¼i

(DP 2) Ĉj(z) = minf(c;w0):z=u(c)+¯w0g c+ (1 + r)¡1Cj+1(w0)
The functions zi = fi(l1; :::; lN ;w) in problem DP 1' are constructed in the two equations

below. The ¯rst equation holds for i > 1 by repeated substitutions from the downward IC
constraint. This equation says that promised utility zi to a person with shock i is the utility
to the person with the lowest shock z1 plus the sum of the utility di®erences when one lies
downward one shock. These utility di®erences are positive by Thm. A.3(i). The second
equation holds by substituting the ¯rst equation into the promise keeping constraint. This
then states z1 in terms of the labor choices and promised utility w. These two equations de¯ne
the functions zi = fi(l1; :::; lN ;w) for i = 1; :::; N .

zi = z1 +
iX

j=2

[v(lj¡1(sj¡1=sj))¡ v(lj)]

z1 = w ¡
NX
i=1

v(li)¼i ¡
NX
i=2

[
iX

j=2

(v(lj¡1(sj¡1=sj)))¡ v(lj)]¼i

A.2 Computation

A.2.1 Social Security Problem

The social security problem is stated below as a dynamic programming problem. This involves
reformulating the present value budget constraint as a sequence of budget constraints where
resources are transfered across periods with a risk-free asset. Risk-free asset holding must
then always lie above period and shock speci¯c borrowing limits: aj(s).

24 The state variable
is (a; s; z) where a is asset holdings, s is the period productivity shock and z is average past
earnings. The functions Tj and Fj describe the tax system and the law of motion for average
past earnings. Labor productivity is a Markov process with transition probability ¼(s0js).

Vj(a; s; z) = max(c;l;a0) u(c; l) + ¯
P
s0 Vj+1(a

0; s0; z0)¼(s0js)
(1) c+ a0 · a(1 + r) + !(s; j)l ¡ Tj(a; z; !(s; j)l)
(2)c ¸ 0; a0 ¸ aj(s); l 2 [0; 1]
(3) z0 = Fj(z; !(s; j)l)

24These limits are the maximum present value of labor earnings plus social security bene¯ts in the worst
labor-productivity history. This assumes that one can borrow against future social security bene¯ts.
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This problem is solved computationally by backwards induction. The value function Vj(a; s; z)
is computed at selected grid points (a; s; z) by solving the right-hand-side of Bellman's equa-
tion. We use the simplex method (see Press et al (1994)). Evaluating the right-hand-side of
Bellman's equation involves a bi-linear interpolation of the function Vj+1(a

0; s0; z0) over the two
continuous variables (a0; z0). We set the borrowing limit to a ¯xed value a in each period. We
then relax this value so that it is not binding. This is a device for imposing period and state
speci¯c limits aj(s). To use this device, penalties are imposed for states and decisions implying

negative consumption.25

We compute ex-ante, expected utility V ss and the expected cost of running the social
security system, denoted Cost, by simulation, under the assumption that an agent starts out
with no assets. Speci¯cally, we draw a large number (10,000) of lifetime labor-productivity
pro¯les, compute realized utility and realized cost for each pro¯le, using the computed optimal
decision rules, and then compute averages.

A.2.2 Planning Problem

We describe how we compute the optimized value V pp, given the value of Cost. The algorithm
for the temporary shock case is presented ¯rst.

(DP 1') Cj(w) = min
P

i[¡lisi + Ĉj(fi(l1; :::; lN ;w)))]¼i
(DP 2) Ĉj(z) = minf(c;w0):z=u(c)+¯w0g c+ (1 + r)¡1Cj+1(w0)

ALGORITHM:

1. Set terminal value function on grid points w 2 fw1; :::; wMg: ĈJ(w) ´ u¡1(w)
2. For each w 2 fw1; :::; wMg, we use amoeba from Press et al (1994) to solve the right-
hand-side of DP 1' to compute Cj . This involves a linear interpolation of Ĉj .

3. Given Cj , compute Ĉj¡1 at grid points by solving DP 2. This is done by grid search.

4. Repeat steps 2-3 for all ages j back to age 1.

5. Find V pp solving C1(V
pp) = Cost. This is done by simulation using the optimal decision

rules.

We now indicate how to compute V pp for the case of permanent shocks. The permanent
shock problem is restated below.

V pp ´ max(lj(s);cj(s))
P

s[
P
j ¯

j¡1(u(cj(s)) + v(lj(s)))]P (s) s.t.

(i)
P
s[
P

j(cj(s)¡ lj(s)s)=(1 + r)j¡1]P (s) · Cost
25The backward induction procedure takes as given a value for average earnings in the economy. This is

used to determine the tax function Tj . Thus, an additional loop is needed so that guessed and implied values
of average earnings coincide. To compute solutions, we use 500 evenly spaced grid points on assets a and 25
grid points on average earnings z over the interval [0; emax]. Recall from section 4 that there are 5 shocks
values s.
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(ii)
P
j ¯

j¡1(u(cj(s)) + v(lj(s)) ¸
P
j ¯

j¡1(u(cj(s0)) + v(lj(s0)s0=s));8s;8s0

We analyze a \relaxed" problem which is the same as the problem above except that we
require that only the local downward incentive constraints hold rather than all the incentive
constraints. The local downward incentive constraints are the constraints implied by requiring
that truth telling from shock si dominate claiming to be one shock lower (i.e. claiming shock
si¡1). It is straightforward to show two results. First, in a solution to the relaxed problem all
the local downward incentive constraints bind. Second, if an allocation (c; l) has the property
that all the local downward incentive constraints bind and lj(s)s is increasing in s for all j,
then all the incentive constraints hold. The argument for this follows the proof of similar claims
in Theorem A3. Our computational strategy is therefore to compute solutions to the relaxed
problem AND to verify ex-post that in all periods lj(s)s is increasing in s.

26

We compute solutions to the relaxed problem by solving the equivalent problem below.
This equivalent problem is useful for computational purposes as it reduces the dimension of
the control variables by substituting out all binding constraints. This equivalence follows from
two observations. First, additive separability of u(c; l) implies that consumption is chosen in
the relaxed problem without distortion. Using this fact, maximization could then be done over
labor and the lifetime utility of consumption u(s). This eliminates the choice of consumption
from the problem. The relevant cost constraint is written in the second equation below, where
COST (u(s)) is a known function, derived from the ¯rst order conditions to the relaxed prob-
lem, describing the minimum resource cost of obtaining lifetime utility of consumption u(s).27

Second, we also eliminate maximizing over u(s) by expressing u(s) = g(l; s; Cost) as a function
of the labor plan and other data. To do this, we solve for u(s) from the relevant binding local
downward incentive constraints and the binding cost constraint. The third and fourth equa-
tions below are intermediate steps towards computing u(s) = g(l; s; Cost). They use the fact
that shocks are ordered so that s1 < s2 < ::: < sN .

max
(l)

X
s

[
X
j

¯j¡1v(lj(s)) + g(l; s; cost)]P (s)

X
s

[COST (u(s))¡
X
j

slj(s)=(1 + r)
j¡1]P (s) = Cost

X
j

¯j¡1v(lj(si)) + u(si) =
X
j

¯j¡1v(lj(si¡1)si¡1=si)) + u(si¡1)

u(sn) = u(s1) +
nX
i=2

[
X
j

¯j¡1v(lj(si¡1)si¡1=si))¡
X
j

¯j¡1v(lj(si))]

We use amoeba from Press et al (1994) to solve the relaxed problem. This involves max-
imizing over labor choices (l1(s); :::; lR¡1(s)). These choices lie in an R ¡ 1 £ N dimensional

26In actual computations we verify that lj(s)!(s; j) is increasing in s, since !(s; j) = s is used in Appendix
A soley to reduce notational clutter.
27When ¯(1+ r) = 1, COST (u(s)) has a simple form as consumption is constant. When ¯ < 1 and r > 0

then COST (u(s)) = u¡1[(1¡ ¯)u(s)=(1¡ ¯J)][1¡ (1=(1 + r))J ](1 + r)=r.
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space as there are R ¡ 1 labor periods and N possible permanent shocks. Each evaluation
of the objective requires the computation of g(l; s; Cost). This involves ¯nding a value u(s1)
solving the second and fourth equations above, given (l1(s); :::; lR¡1(s)) and Cost.

A.3 Proofs of Theorems A1-3

Theorem A1: Assume u(c; l) = u(c)+v(l), u(c) is continuous on R1++, u(c) is strictly increasing
and u(0) = ¡1. If (c; l) solves the Dual Problem, given u¤ > ¡1, then (c; l) solves the Primal
Problem, given Cost ´ E[Pj

(cj¡sj lj)
(1+r)j¡1 ].

Proof: Suppose not. Thus, there exists (¹c; ¹l) that is IC and costs no more than (c; l) but that
delivers strictly more expected utility than (c; l). Construct (c¤; l¤) that satis¯es constraints
(1)-(2) in the Dual Problem but that delivers strictly lower cost than (c; l).

Set l¤j ´ ¹lj ;8j and c¤j ´ ¹cj ;8j ¸ 2. Set c¤1(s) to solve u(c¤1(s)) = u(¹c1(s))¡ ². Thus, c¤1(s)
produces a uniform decrease in utility in period 1 of ² > 0. If ¹c1(s) > 0;8s, then by continuity
there exists ² > 0 such that c¤1(s) ¸ 0;8s and E[

P
j ¯

j¡1u(c¤j ; l
¤
j )] ¸ u¤. Clearly, u(0) = ¡1

implies that ¹c1(s) > 0. Since (¹c; ¹l) is IC and the utility decrease is uniform regardless of reports,
(c¤; l¤) is also IC. This is a contradiction since (c¤; l¤) costs strictly less than (c; l). 2

Theorem A2: For the case of independent shocks, (c; l) is IC if and only if 9fwj(sj¡1)gJ+1j=2

such that restrictions (a)-(b) hold:
(a) u(cj(s

j¡1; sj); lj(sj¡1; sj)) + ¯wj+1(sj¡1; sj) ¸
u(cj(s

j¡1; s0j); lj(s
j¡1; s0j)(s

0
j=sj)) + ¯wj+1(s

j¡1; s0j);8(sj¡1; sj);8s0j
(b) wj(s

j¡1) = E[u(cj(sj); lj(sj)) + ¯wj+1(sj)jsj¡1];8j and wJ+1(sJ) = 0
where sj denotes the history of truthful reports up to period j.
Proof:
()) Backward induction on restriction (b) de¯nes the function wj+1 uniquely. Substitute

wj+1 into restriction (a). The resulting inequality is then a direct implication of (c; l) being
IC. Speci¯cally, it is implied by truth telling being superior to a feasible report ¾ where one
reports truthfully at all ages and histories except (sj¡1; sj) where the report is s0j rather than
sj . [Independence used here.]

(() Suppose not. Then restriction (a)-(b) hold but there is a report ¾ that strictly improves
over truth telling, given (c; l). Let ¾ have the smallest number of false reports at distinct age-
histories sj among those report functions ¾ that strictly improve over truth telling. Such a ¾
exists since the number of age-histories is ¯nite. Choose j as large as possible so that ¾ involves
a false report (i.e. ¾j(s

j) 6= sj) at some s
j . Then restriction (a)-(b) implies that given that

¾ has been used in the past, telling the truth in period j and subsequently leads to at least
as much conditional expected utility at sj as using ¾. Thus, there is another feasible report
function that strictly improves over truth telling and that has a smaller number of false reports.
Contradiction. 2

Theorem A3: Assume u(c; l) = u(c) + v(l), u and v are strictly concave, u is increasing, v
is decreasing and that shocks are independent. Then

(i) Incentive compatibility implies that lisi is increasing in i.
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(ii) Cii¡1; Ci¡1i ¸ 0; i = 2; :::;N imply that Cij ¸ 0 8i; j.
(iii) Cii¡1 = 0; i = 2; :::; N imply that Ci¡1;i ¸ 0; i = 2; :::;N and that Ci¡1;i > 0 whenever

lisi > li¡1si¡1.

(iv) In a solution to the Recursive Dual Problem all local downward constraints bind.

Proof:
(i) Assume that it is feasible to claim to have received shock i when one has shock i ¡ 1.

If not, then lisi ¸ li¡1si¡1 holds trivially. Thus, we have that Cii¡1; Ci¡1i ¸ 0. Adding these
inequalities and using the fact that u(c; l) = u(c) + v(l) implies the ¯rst equation below. The
second equation rearranges the ¯rst. The second equation and v concave then implies that
lisi ¸ li¡1si¡1 must hold.

v(li)¡ v(li¡1si¡1=si) ¸ v(lisi=si¡1)¡ v(li¡1)

v(lisi=si)¡ v(li¡1si¡1=si) ¸ v(lisi=si¡1)¡ v(li¡1si¡1=si¡1)
(ii) Show ¯rst that Cij ¸ 0;8j < i. As a ¯rst step show that Cii¡2 ¸ 0. This follows from

the three lines below. The ¯rst line is Ci¡1i¡2 ¸ 0. The second line follows from line one and
the fact that v(li¡1si¡1=s) ¡ v(li¡2si¡2=s) increases as s increases for s ¸ si¡1. The last fact
holds since lisi increases as i increases (Thm. A3(i)) and since v is concave. Line three follows
from line two and Cii¡1 ¸ 0.

u(ci¡1; li¡1) + wi¡1 ¸ u(ci¡2; li¡2si¡2=si¡1) + wi¡2

u(ci¡1; li¡1si¡1=si) + wi¡1 ¸ u(ci¡2; li¡2si¡2=si) + wi¡2

u(ci; li) + wi ¸ u(ci¡1; li¡1si¡1=si) + wi¡1 ¸ u(ci¡2; li¡2si¡2=si) + wi¡2
To show that Cij ¸ 0 holds for all j < i, proceed by induction repeating the three steps

above, where the ¯rst step is the induction step.
It remains to show that Cij ¸ 0;8j > i if any of these upward lies are feasible. As a ¯rst

step show that Cii+2 ¸ 0. This follows from the three lines below for essentially the same
reasons as in the argument above. The remainder of the proof follows by an induction which
is parallel to that given above.

u(ci+1; li+1) + wi+1 ¸ u(ci+2; li+2si+2=si+1) + wi+2

u(ci+1; li+1si+1=si) + wi+1 ¸ u(ci+2; li+2si+2=si) + wi+2

u(ci; li) + wi ¸ u(ci+1; li+1si+1=si) + wi+1 ¸ u(ci+2; li+2si+2=si) + wi+2
(iii) Implied by v being strictly concave.
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(iv) (Rough argument) Suppose not. Let (ci; li; wi) be a solution in which a downward
constraint is not binding. Construct (c¤i ; l

¤
i ; w

¤
i ) so that labor and future utility are the same

as before but consumption is di®erent. Squeeze the consumption distribution so that (a) mean
consumption is lower, (b) all downward constraints still hold and (c) mean u(c) unchanged.
This lowers the objective and satis¯es all constraints. Contradiction.

[Note: Argument involves lowering consumption in some state. Thus, one needs strictly
positive consumption. A su±cient condition for this to hold for states w > ¡1 is u(0) = ¡1.]

2
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A Appendix: Tax Implementation

The following claims are useful in tax implementing solutions to the planning problem.

Claim 1: Assume that u(cj ; lj) = u(cj) + v(lj), where u and v are strictly concave and
di®erentiable. Assume also that shocks are permanent. If (c; l) is an interior solution to the
planning problem, then the following hold:

(i) u0(cj(s))=¯u0(cj+1(s)) = 1 + r;8s; for j = 1; :::; J ¡ 1.
(ii) ¡v0(lj(s))=u0(cj(s)) = Bj(s)!(s; j);8s; for j = 1; :::; R ¡ 1, where Bj(s) = 1 for s = N

and Bj(s) < 1 otherwise.

Proof: Claim 1 follows from reorganizing the ¯rst order conditions (i.e. dL=dcj(s) = 0
and dL=dlj(s) = 0) associated with the Lagrangean function below. [To use this Lagrangean,
one needs a proof that only the local downward constraints are relevant.] In what follows, s+

denotes one higher shock than s, whereas s¡ denotes one lower shock than s.

L =
X
s

X
j

¯j¡1u(cj(s); lj(s))P (s) + ¸[Cost¡
X
s

X
j

(cj(s)¡ !(s; j)lj(s))P (s)
(1 + r)j¡1

]

+
PN
s=2 °(s)

P
j ¯

j¡1[u(cj(s); lj(s))¡ u(cj(s¡); lj(s¡)!(s
¡;j)

!(s;j) )]

Claim 1(i) follows directly from dL=dcj(s) = 0 and additive separability.
Claim 1(ii) follows from dL=dcj(s) = 0 and dL=dlj(s) = 0. These conditions imply that

¡v0(lj(s))=u0(cj(s)) = Bj(s)!(s; j). It is straightforward to see that Bj(s) = 1 for s = N . For
s < N , the term Bj(s) is given below. What remains to be shown is that Bj(s) < 1 for s < N .
This follows from two observations. First, the Lagrange multiplier °(s) is strictly positive.
Second, the term multiplying °(s+) in the denominator is less than one. The ¯rst observation
can be proven by contradiction. The second follows from the fact that !(s; j)=!(s+; j) < 1 and
that v is strictly concave.

Bj(s) ´ [P (s) + °(s)¡ °(s+)]
[P (s) + °(s)¡ °(s+)v

0(lj(s)
!(s;j)

!(s+;j)
)
!(s;j)

!(s+;j)

v0(lj(s))
]

2

Could try to say something about intertemporal labor distortion. Using dL=dlj(s) = 0 it is
true that v0(lj(s))=¯v0(lj+1(s)) = Aj(s)(1 + r), where Aj(s) is given below. Highest shock guy
has labor moving with labor productivity (assuming ¯(1+ r) = 1). Thus, in general aj(s)6= 1.

Aj(s) ´
[P (s) + °(s)¡ °(s+)v

0(lj+1(s)
!(s;j+1)

!(s+;j+1)
) !(s;j+1)

!(s+;j+1)

v0(lj+1(s))
]

[P (s) + °(s)¡ °(s+)v
0(lj(s)

!(s;j)

!(s+;j)
) !(s;j)

!(s+;j)

v0(lj(s))
]
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The goal is to establish conditions under which solutions to the planning problem are tax
implementable. The de¯nition below provides a notion of tax implementation. Claim 2 then
provides a ¯rst result on tax implementation. Claim 2 can be paraphrased as saying that if
one restricts earnings pro¯les to those that occur in a realization of a solution (c¤; l¤), then one
can impose taxes on earnings histories and implement (c¤; l¤) via simple borrowing and lending
markets.28

De¯nition: An allocation (c¤; l¤) is tax implementable if there exists a function Tax : ¡! R
such that (c¤j (s); l

¤
j (s)) is a solution to the Tax Problem below for all s 2 S.

Tax Problem: max(cj ;lj)2¡(Tax;s)
P

j ¯
j¡1u(cj ; lj)

¡(Tax; s) = ffcj ; ljgJj=1 :
P

j
(cj¡!(s;j)lj)
(1+r)j¡1 · ¡Tax(f!(s; j)ljg) and f!(s; j)ljg 2 ¡g

¡ = ffzjgJj=1 : 9s 2 S such that zj = l¤j (s)!(s; j); j = 1; :::; Jg.

Claim 2: Assume that the assumptions of Claim 1 hold. If (c¤; l¤) is an interior solution
to the planning problem, then (c¤; l¤) is tax implementable. Furthermore, the following tax
function does the job: Tax(fzjg) =

P
j

(!(s;j)l¤j (s))¡c¤j (s))
(1+r)j¡1 when zj = !(s; j)l¤j (s);8j for some

s 2 S.

Proof: The proof is based on showing that the following two inequalities hold. The result
then follows since by construction (c¤j (s); l

¤
j (s)) 2 ¡(Tax; s) for all s 2 S.

X
j

¯j¡1u(c¤j (s); l
¤
j (s)) ¸ max

ŝ2S

X
j

¯j¡1u(c¤j (ŝ); l
¤
j (ŝ)

!(j; ŝ)

!(j; s)
) ¸ max

(cj ;lj)2¡(Tax;s)

X
j

¯j¡1u(cj ; lj)

The leftmost inequality above follows since (c¤; l¤) is IC. The rightmost inequality is implied
by the fact that, setting labor earnings (l¤j (ŝ)!(ŝ; j)) to any pro¯le allowed, consumption (c

¤
j (ŝ))

solves the Tax problem. To establish this latter fact, note that because u is concave the ¯rst
order conditions and budget constraint are su±cient for a solution to the Tax problem, given
labor earnings. Claim 1(i) then implies that the ¯rst order conditions for this problem hold
when evaluated at (c¤j (ŝ)). 2

One could hope to extend the result in Claim 2. For example, one could hope to relax the
domain restriction on the tax function or to say something more about the structure of the tax
functions that implement solutions to the planning problem. Both extensions involve knowing
something more about the labor allocations that solve the planning problem.

Claim 3: Assume that the assumptions of Claim 1 hold. If (c¤; l¤) is an interior solution to
the planning problem, then (c¤; l¤) is tax implementable. Furthermore, the tax function is a tax

28If one were to specify the budget constraint in the Tax Problem as a sequence of budget restrictions, then
the timing of tax collection would be unimportant. In this context only the net-present value of taxation
along an earnings pro¯le is important.
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on the present value of earnings rather than simply a function of the entire history of earnings.
[Domain of present values??]
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Average earnings and benefit payments are both expressed as a multiple of average economy wide earnings.

Figure 1: US Social Security Benefit Formula
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Source: Congressional Budget Office (2004)

Figure 2: Average Tax Rates
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Source: Heathcote et al (2004). Panel Study of Income Dynamics data on wages for males from age 20 to 64.

Figure 3: US Wage Profile
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The bold vertical line in Figure 4 highlights the location of the point estimates of the variances described in the text.

Figure 4: Inefficiency
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The bold vertical line in Figure 4 highlights the location of the point estimates of the variances described in the text.

Figure 4: Inefficiency

4b. Transitory Shocks
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Figure 5: Labor Profiles Without Idiosyncratic Risk

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

0.450

1 5 9 13 17 21 25 29 33 37 41 45

Age

Fr
ac

tio
n 

of
 T

im
e 

W
or

ki
ng

Social Security with Income Tax Efficient Allocation



Figure 6: Marginal Tax Rate on Earnings
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The bold vertical line in Figure 7 highlights the location of the point estimates of the variances described in the text.

Figure 7: Decomposition of Inefficiency
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The bold vertical line in Figure 7 highlights the location of the point estimates of the variances described in the text.

Figure 7: Decomposition of Inefficiency

7b. Permanent Shocks
Social Security with Income Taxation

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

Variance log(s)

In
ef

fic
ie

nc
y

Inefficiency of Allocation (c^ss, l^ss) Inefficiency of Allocation (c*, l^ss)



Computations using point estimates of the variances described in the text.

Figure 8: Net Tax Rate
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Computations using point estimates of the variances described in the text.

Figure 8: Net Tax Rate
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Figure 9: Consumption - Labor Wedge

9a. Efficient Allocation with Permanent Shocks
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Figure 9: Consumption - Labor Wedge

9b. Social Security with Permanent Shocks
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