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Abstract

A platform offers an environment where heterogenous buyers and sellers have one
opportunity to meet a partner and form a match; no match is feasible outside the envi-
ronment. We evaluate and compare the profit maximizing and the surplus maximizing
platforms. There are two important features: buyers and sellers only observe (inside
the environment) a noise of their partner’s type and do not observe their own noisy
signal, and the platform can only charge a fixed (but possibly different) access fee to
buyers and sellers. The platform do not run the match, but he influences the matching
equilibrium through the effect on the probability of being matched, and through the
expected type of buyers and sellers willing to participate. We compute and interpret
the platform’s optimal pricing rule under the light of the two-sided market literature,
and show which matching equilibrium emerges under several model’s primitives. Fi-
nally, we show the profit maximizing platform overprovides information compared to
the benchmark case.
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1 Introduction

Platforms are often regarded as “central planners” because they own an environment in
which, for example, buyers and sellers enter to meet each other and engage in transactions
that otherwise could not be carried out. The literature of two-sided markets so far had
payed great attention in understanding how the network effects shape the platform’s pricing
scheme, see for example [1], [6], [19], [21]. An interesting task we face is to understand
how the behavior of the platform changes (e.g., its pricing scheme or any other tool), under
different environments that are rather relevant for many industries.

The specific situation this paper is interested in is the one of a platform that owns an
environment were buyers and sellers have imperfect information about their partner. We
will consider both the profit maximizing and the surplus maximizing platforms. To simplify
even more, we assume the motivation to participate into the environment is because this is
the only way to match with a trading partner, we also assume the platform has a technology
that only allows him to charge an access fee. This environment has three important features:
that buyers and sellers have imperfect information about their trading partner’s type, also
that they cannot control the information their partner receives about them, and that the
platform cannot directly control de match but he controls the information buyers and sellers
have from each other.

We have two questions in mind. The main question we ask is how the platform’s behav-
ior (i.e. pricing scheme and optimal information provision to buyers and sellers) changes in
this particular environment vis-a-vis the standard two-sided market literature. The second
question we want to answer is how the matching equilibrium is affected by the platform’s
behavior. To our knowledge this is the first paper that studies the impact of a profit max-
imizing and also a surplus maximizing central planner on the matching equilibrium with
noisy signals.

Why is this environment interesting in the first place? The main application we have in
mind are platforms that cannot directly control which buyers and sellers will engage into
trading, but that can indirectly shape the equilibrium matching patterns observed inside
the environment through its pricing scheme and its optimal provision of information. For
example, imagine a platform that cannot force buyers and sellers to search for a matching
partner in a specific way, but that can determine the expected “quality” of buyers (seller)
that will participate and/or the equilibrium probability of forming a match. To wrap-up,
the platforms we are interested in are not capable to directly run the match between buyers
and sellers, but can induce it in ways that latter will be explained in greater detail.

Our results hinges on an assumption that guarantees the better is the type, e.g. of buyers
and sellers, the more likely is that he receives a high signal. We show there exists a match-
ing equilibrium, among those buyers and sellers that participate, where the participants use
strategies that are increasing in types. Then we proceed to characterize the matching equi-
libria, we show that they depend on the mass of buyers and sellers willing to participate.
In particular, we determine several thresholds on the mass of participants that determine
which equilibrium will emerge. In the next step we compute the optimal pricing rules for
the profit maximizing platform, and for the surplus maximizing platform; nice intuitions will
emerge out from their comparison. We show through numerical simulation which matching
equilibrium will be picked by the profit maximizing platform. Finally, we compute the opti-
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mal noise for the profit maximizing platform, and for the surplus maximizing platform. We
show that, compared to the benchmark case, the profit maximizing platform overprovide
information to both buyers and sellers.

This paper is feeding from two strands of literature. On one hand, we are clearly related
to the two-sided market literature cited at the beginning. The novelty we propose to this
literature is to understand the platform’s behavior under the particular environment we
just described. The closest paper to ours we can identify is [8], the main difference is
that network participants have imperfect information and that the platform can affect the
equilibrium probability of finding a match. On the other hand, our paper is related to the
matching literature such as [4], [5], [7]. The novelty we propose here is to understand how
matching equilibrium is affected by the platforms’ activities given the particularities of the
environment we propose. The closest papers to ours are [12] and [18], but neither of them
study the effect of a profit maximizing platform.

The paper proceeds as follows. Section 2 presents the model, there we will show there
exist a matching equilibrium, and then we will characterize it. Section 3 discuss the optimal
pricing rule. Section 4 discuss the optimal noise. Section 5 concludes.

2 Static Model

The model has four features. First, buyers and sellers only perceive utility from forming a
match. Second, there are some buyers and sellers whose type is negative. Third, its impos-
sible to form a match outside the searching environment hosted by the platform. Finally,
inside the searching environment buyers and sellers only receive one matching partner to
choose from.

2.1 Environment

Time. One period.

Players. One profit maximizing platform endowed with an environment. On the other
hand, two disjoint groups of ex-ante heterogeneous network users, i.e. buyers (B) and sellers
(S), that want to meet with each other to engage in trading activities. More formally, buyer’s
type is defined by the usage benefit b ∼ FB(b) and fB(b) > 0 on the support [b, b], where
b < 0 < b. Seller’s type is also determined by a usage benefit s ∼ FS(s) and fS(s) > 0 on
the support [s, s], where s < 0 < s. Buyers and sellers’ type is private information.

Information Structure. Inside the environment. Buyers and sellers only directly observe
a signal from their partner’s type. Seller s will observe a signal θ ∈ {θ, θ} st θ < θ, with the
conditional probability mass function (pmf) m̃(θ | b) = m(b)1θ=θ + (1 − m(b))1θ=θ, where

m(b) = Prob{θ | b}, and the conditional discrete probability distribution (cdpd) M̃(θ | b).
Analogously, buyer b will observe a signal ω ∈ {ω, ω} st ω < ω with the conditional pmf
ñ(ω | s) = n(s)1ω=ω + (1− n(s))1ω=ω, where n(s) = Prob{ω | s}, and the conditional cdpd

Ñ(ω | s). Neither sellers or buyers will observe their own signal. Finally, and to simplify,
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assume n(s) satisfy n(s) ≥ 0, n(s) ≥ 1, n′(s) > 0, and m(b) satisfy m(b) ≥ 0,m(b) ≥
1,m′(b) > 01

Outside the environment. Buyers and sellers type is private information.

Payoffs Transaction. If buyer b and seller s match they receive a payoff equivalent to their
partner’s type, e.g. b obtains s, and s obtains b. If buyer b and seller s do not match they
receive zero profit. Finally, everybody has to pay a search cost proportional to c > 02; in
particular, we will have that the cost of searching and accepting any partner is higher than
the cost of searching and only accepting partners with a high signal.

Participation. Platform will charge a linear price to all buyers (P b), and another to all
sellers (P s). Also will offer pmf’s n(s) and m(b). Buyer b will obtain a expected trade
surplus Eωw(ω, b), and will pay an entry fee P b. Finally, seller s will obtain a expected trade
surplus Eθv(θ, s), and will pay an entry fee P s.

Matching Game. Random meeting. Simultaneously buyer b observes ω, and seller s
observes θ. If both accepts their partner they form a match, otherwise, no match is formed.
To simplify I will assume that each buyer (seller) will encounter a maximum one partner.

Strategies. Buyers. The accept/reject decision is governed by Λb : {ω, ω} → {{ω}, {ω, ω}}.
The enter/stay out decision is governed by σb : [b, b] → {0, 1}. Finally define, ΛB = (Λb)b∈[b̂,b]
and σB = (σb)b∈[b,b].

Sellers. The accept/reject decision is governed by Λs : {θ, θ} → {{θ}, {θ, θ}}, where
b̂ is the threshold seller indifferent between participating and staying out. The enter/stay
out decision is governed by σs : [s, s] → {0, 1}. Finally define, ΛS = (Λs)s∈[ŝ,s], and σS =
(σs)s∈[s,s].

Platform. His strategy will specify access fees, e.g. P s, P b, and signal’s conditional pmf’s,
e.g. n(s), m(b).

Timing. At the beginning, (i) Buyer b privately learn b ∼ FB(b) ∀b, seller s privately learn
s ∼ FS ∀s. Then, (ii) the platform determines P s, P b, n(s), m(b). At the next step, (iii) all
buyers and sellers decide to enter or stay out. Among those that participate, (iv) buyer b
and seller s randomly meet in pairs. Any buyer b privately learn ω, and any seller s privately
learn θ. Now within each pair, (v) buyers and sellers accept or reject their partner. Finally,
(vi) if buyer b and seller s accept they form a match and receive the corresponding payoff,
otherwise they stay single and receive zero payoff.

1In case θ and ω where a continuous random variables this assumption is equivalent to assume the families
of functions {m̃(θ | b) : b ∈ [b, b]} and {ñ(ω | s) : s ∈ [s, s]} are strict log-supermodular (satisfy MLRP). See
[7] for additional details.

2This cost in the two-sided market literature is the membership cost (see [21])
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b ∼ FB(b)

s ∼ FS(s)

P s, P b

Enter / Stay out

b observes ω
s observes θ

Reject / Accept

Matchs

n(s),m(b)

2.2 Matching Equilibrium

Lets define what a matching equilibrium is. Denote Υ(b,Λb,ΛS ;σB, σS) as the expected utility of
buyer b using Λb, given all sellers using ΛS and given the entry decisions σB and σS . Similarly
denote Υ(s,ΛB,Λs;σB, σS) for seller s. A matching equilibrium is a strategy profile (Λ∗

B,Λ
∗
S) such

that ∀b ∈ [b̂, b]

Υ(b,Λ∗
b ,Λ

∗
S ;σB, σS) ≥ Υ(b,Λ′

b,Λ
∗
S ;σB, σS)

where Λ′
b is al alternative strategy, and ∀s ∈ [ŝ, s]

Υ(s,Λ∗
B,Λ

∗
s;σB, σS) ≥ Υ(s,Λ∗

B,Λ
′
s;σB, σS)

and where Λ′
s is al alternative strategy.

This model can replicate qualitatively the results of a dynamic matching model that assume
the distribution of types (of buyers and sellers) is stationary, the essential assumption is that types
could be negative. In particular, this model can be viewed as a static reformulation of [7].

2.2.1 Optimal Accept/Reject Strategy

Consider the case of seller s that receives a partner with probability Ps3. After observing signal
θ the seller updates his beliefs about his partner’s type (b) using bayes rule, e.g. k(b | θ) =
m̃(θ|b)(1−FB(b̂))fB(b)∫ b

b̂
m̃(θ|b)fB(b)db

where m̃(θ | b) = m(b)1θ=θ + (1 − m(b))1θ=θ. He must decide whether to

accept him or not, and if he does not he will obtain zero payoff. On the other hand, if he accepts
his partner two things might happen: he gets accepted or rejected. His partner (e.g. buyer b)
will accept those sellers belonging the set Λb, then the probability his partner accepts him is
∆s(Λb | s) = Prob{ω ∈ Λb | s}. Then, the expected payoff of announcing accept, conditional on
having a partner type b, is b∆s(Λb | s). Finally, to obtain the unconditional expected payoff from
accepting his partner one must integrate out the type b using k(b | θ).

The objective function for seller s, conditional on θ, will be,

v(θ, s) = max

{
Ps

∫ b

b̂
b∆s(Λb | s)

k(b | θ)
1− FB(b̂)

db, 0

}
− c

= [Psa(θ, s)γ(θ, s)]+ − c (1)

3Latter we will assume that Ps = {NB

NS
, 1} and Pb = Ps NS

NB
, where NB and NS are respectively the mass

of buyers and sellers that participate. Potential participants are small enough to regard it as a parameter.
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where a(θ, s) =
∫ b
b̂ ∆s(Λb | s) k(b|θ)

1−FB(b̂)
db is the probability seller s is accepted, and γ(θ, s) =∫ b

b̂ b∆s(Λb|s)
a(θ,s)

k(b|θ)
1−FB(b̂)

db is the expected buyer’s type conditional on being accepted by him, and con-

ditional on him deciding to participated. Finally, the unconditional expected surplus from entering
will be Ψ(s) = Eθv(s, θ).

A similar expression can be constructed for buyer b. He will encounter a seller s with probability
Pb, and he must decide whether to accept him or not. If he doesn’t payoff is zero. If he does,
the unconditional expected payoff will be Pbd(ω | b)α(ω, b), where k(s | ω) = ñ(ω|s)(1−FS(ŝ))fS(s)∫ s

ŝ ñ(ω|s)fS(s)ds
and ñ(ω | s) = n(s)1ω=ω + (1 − n(s))1ω=ω. Analogously define ∆b(Λs | b) = Prob{θ ∈ Λs | b},
d(ω, b) =

∫ s
ŝ ∆b(Λs | b) k(s|ω)

1−FS(ŝ)
ds, and α(ω, b) =

∫ s
ŝ s∆b(Λs|b)

d(ω,b)
k(s|ω)

1−FS(ŝ)
ds.

The objective function for buyer b, conditional on ω, will be,

w(ω, b) =
[
Pbd(ω, b)α(ω, b)

]+
− c (2)

and the unconditional expected surplus from entering will be Φ(b) = Eωw(b, ω).

The optimal accept/reject strategy can be easily characterized by a threshold condition and
is very simple in this setup. In the general case with a continuum of possible signals [7] showed
that if the family of functions {m(θ | b) : b ∈ [b, b]} and {n(ω | s) : s ∈ [s, s]} satisfy a strict log-
supermodularity assumption, then the optimal strategy is completely characterized by a threshold
signal such that only those partners with a signal higher or equal will be accepted. In this setup
the strategy greatly simplifies because we only consider two possible signals; e.g. for seller s, if the
threshold θ̂(s) is equal to the low signal then any buyer will be accepted, and if the threshold is
greater to the low signal then only buyers with θ will be accepted. The following lemma formalizes
this paragraph.

Lemma 2.1. Let the set Λb = ∅ and the set Λs = ∅ has no positive measure. (I) The optimal
accept/reject strategy for a seller s ∈ [ŝ, s], is Λs = {θ, θ} if θ̂(s) = θ, and Λs = {θ} otherwise,
for θ ≤ θ̂(s) ≤ θ. (II) The optimal accept/reject strategy for a buyer b ∈ [b̂, b], is Λb = {ω, ω} if
ω̂(b) = ω, and Λb = {ω} otherwise, for ω < ω̂(b) ≤ ω.

Finally, using the previous lemma, the expected surplus seller s and buyer b can be rewritten
as

Ψ(s) =
1

1− FB(b̂)

∑
θ∈Λs

Psa(θ, s)γ(θ, s)m̃(θ)− c
∑
θ∈Λs

m̃(θ)

 (3)

Φ(b) =
1

1− FS(ŝ)

∑
ω∈Λb

Pbd(ω, b)α(ω, b)ñ(ω)− c
∑
ω∈Λb

ñ(ω)

 (4)

where m̃(θ) =
∫ b
b̂ m̃(θ | b)fB(b)db and ñ(ω) =

∫ s
ŝ ñ(ω | s)fS(s)ds.

2.2.2 Existence of (Monotone Pure Strategy) Equilibrium

As types are not perfectly observed we will follow [7] strategy to prove existence. The author
shows that we can reinterpret this matching model with two heterogeneous populations as a two-
player simultaneaous game with incomplete information and a continuum of types, and where each
player chooses a type-contingent strategy. In this case, as the type-contingent strategy is fully
characterized by a threshold signal, e.g. θ̂(s), ω̂(b), then each player will need to choose a scalar.
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Formally, we will have two players, i.e. Player 1 and Player 2. The first player’s type s ∈ [s, s]
is distributed according to the cdf FS(s) and pdf fS(s) > 0 over all the support, and his action
space {θ, θ}. Similarly, Player 2’s type b ∈ [b, b] is distributed according to the cdf FB(b) and
pdf fB(b) > 0 over all the support, and his action space {ω, ω}. Players’ utility functions will be
U1(θ̂ | s, ω̂(·)) ≡ Ψ(s) and U2(ω̂ | b, θ̂(·)) ≡ Φ(b).

A pure strategy equilibrium of the bayesian game is defined by a pair of strategies (θ̂∗(s), ω̂∗(b))
such that, (i) θ̂∗(s) = argmaxθ̂∈{θ,θ}U1(θ̂ | s, ω̂(·)) given ω̂∗(b), and (ii) ω̂∗(b) = argmaxω̂∈{ω,ω}U2(ω̂ |
b, θ̂(·)) given θ̂∗(s). This definition its important as long as there is a relationship between a match-
ing equilibrium and the existence of a pure strategy equilibrium of the two-players bayesian game.
We can directly use Proposition 2 from [7] to argue that (θ̂∗(s), ω̂∗(b)) is a matching equilibrium
iff there exist a pure strategy equilibrium of the two-players bayesian game.

To show existence of a monotone pure strategy equilibrium for this two-players bayesian game,
following [2], we need to show that player’s objective functions satisfy the single crossing of incre-
mental returns (SCP-IR) condition in own actions and type. If this is the case, we know that buyers’
and sellers’ best response strategy is increasing whenever his partner use increasing strategies. The
following proposition confirms that we have such situation.

Proposition 2.1. There exists a matching equilibrium in strategies that are increasing in types.

2.2.3 Characterization of the Equilibria

The main difference with the matching literature is that search frictions (i.e. search cost, discount
rate, informational asymmetries), that determine which equilibrium will emerge (e.g. conditions
to obtain positive or negative assortative matching), are no longer assumed exogenous and can be
explained by the actions of a central planner that in this case is the profit maximizing platform.
For this simple environment the mass of buyers and sellers that decide to participate, which in turn
depends on the access fee established by the platform, will determine the equilibrium observed
ex-post.

For this environment there are three possible equilibria: either all buyers and sellers accept
any partner disregarding their signal, or everybody only accept partners with the high signal, or
some buyers (sellers) accept any partners and the rest of them only accept partners with a high
signal4. The following lemma shows that the mass of buyers and sellers that participate completely
determine which equilibrium will emerge.

Lemma 2.2. For a fixed mass of buyers (NB) and sellers (NS) that decide to participate, the
symmetric matching equilibria will be: (i) All buyers and sellers accept every partner they receive
if Ni < (>)Nall

i for i ∈ {b, s}, (ii) All buyers and sellers accept only partners with the high signal if

Ni > (<)Nhigh
i for i ∈ {b, s}, (iii) Some buyers and sellers will accept only partners with the high

signal and the rest will accept any partner they receive if N both
i ∈ [Nall

i , Nhigh
i ] for i ∈ {b, s}.

Before continuing we want to build more on the interpretation of “c”. The literature of matching
that analyzed the impact of search frictions in the matching assortativeness had considered discount
factors and search cost. In our model, parameter “c” is not a search cost like in [3], [4] or [7], it
is must be understood as the cost of searching conditional on being selective or not. To wit, the
seach cost if a seller (or a buyer) accepts any partner will be equal to c, but will equal to cm(b) if
he decides only to accept partners with the high signal.

4The possibility everybody rejects their partner is not an option because at the stage when they decide
to participate or not they should have concluded that the expected surplus once inside was non-negative.

7
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Nb

Ns

c = 0

Nall
b = N

high
b

Nall
s = Nhigh

s

Nall
s

Nhigh
s

Nall
bN

high
b

1

1

c > 0

c > 0

Example 1. Consider the case where s, b ∼ U[−1,1], m(b) = FB(b) and n(s) = FS(s); see figure
bellow. We obtained that if c = 0 the characterization of the matching equilibria is very simple,
in particular the two thresholds Nall

i , Nhigh
i for i ∈ {b, s} are equal. Indeed, if the search cost is

equal to zero to all buyers and sellers, there must be only one threshold level of participation (i.e.

Nall
i = Nhigh

i for i ∈ {b, s}) such that any participation bellow it will induce buyers and sellers
to accept any partner, and any participation above it will induce buyers and sellers to only accept
partners with the high signal.

In case c > 0 we obtain a situation where the thresholds are different (i.e. Nall
i ̸= Nhigh

i for
i ∈ {b, s}). The reason is that the search cost affects more those buyers and sellers with a low
type compared to those with a high type. What’s interesting here is that the platform can pick
and equilibrium where rather than observing “all” buyers and sellers accept every partner, or only
accept partners with the high signal, we will observe that “some” buyers and sellers will only accept
partners with the high signal, and the rest will accept any partner they encounter.

For this example, and after some algebra, we obtain that (i) all buyers and sellers accept their
partner irrespective of their signal if Ni < Nall

i for i ∈ {b, s}, (ii) all buyers and sellers accept

only partners with a high signal if Ni > Nhigh
i for i ∈ {b, s}, and (iii) some buyers and sellers will

only accept high signal partners and the rest will accept any partner if N both
i ∈ [Nall

i , Nhigh
i ] for

i ∈ {b, s}.
Most of these results are robust to other unimodal distributions of types. For example, assuming

that b, s ∼ Logistic(α, β) all results hold if the mean of the distribution is not close to the right of
the support, and if the the distribution has enough dispersion around the mean. Mathematical files
are available upon request.

3 Pricing

We expect that the platform is big enough to modify the probability that any seller (buyer) meets
one buyer, e.g. Ps, (seller, e.g. Pb) once he decides to participate. This assumption is interesting
because the platform knows that buyers and sellers care about the mass of network users that
decide to participate, e.g., a seller will be tempted to participate the higher the mass of potential
partners and the lower the mass of potential sellers willing to participate.
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Until this point of the research we deliberately prevent this from happening for two reasons.
First, in the only attempt we know to deal with similar issues, [8] allows that the pricing scheme
affects the average type of partner he can encounter inside the environment, but assumes that the
probability of forming a match is unaffected. In our model we are considering both effects, then we
prefer to keep it simple and do not include a third effect. And second, by including this additional
effect the objective function is now not differentiable. This could be easily solved by replacing this
it with the probability of meeting at least one partner, but again we consider this is not the main
effect and certainly will complicate the analysis.

The probability a seller (buyer) meets one buyer (seller) will be,

Ps = min{1/ζ, 1}
Pb = Psζ

where NS is the mass of sellers that participate, and NB is the mass of buyers that participate, and
ζ = NS

NB
. Naturally, for the symmetric pure strategy equilibrium we will have that Ps = Pb = 1.

3.1 Profit Maximizing Pricing Rule

Platform demands are determined by the mass of buyers and sellers which type exceeds a threshold
value, e.g. b̂ and ŝ respectively, these thresholds are coming from the buyer and the seller with
net expected payoff equal to zero. Formally, the mass of buyers and sellers that will participate
is NS = Prob{s ≥ ŝ} and NB = Prob{b ≥ b̂}, where ŝ satisfy P s = Eθv(θ, ŝ), and b̂ satisfy
P b = Eωw(ω, b̂). Using that ŝ = F−1

S (1 − NS) and b̂ = F−1
B (1 − NB), the following lemma shows

both access fee depend on the number of buyers and sellers willing to participate.

Lemma 3.1. Both access fees are uniquely determined and are a function on the mass of buyers
and sellers willing to participate. In particular,

P s(NS , NB) ≡ 1

NB

∫ b

F−1
B (1−NB)

[
Psbn(F−1

S (1−NS))− c
]
m(b)fB(b)db

P b(NS , NB) ≡ 1

NS

∫ s

F−1
S (1−NS)

[
Pbsm(F−1

B (1−NB))− c
]
n(s)fS(s)ds

For the platform is equivalent to choose the entry fees (P s, P b) or the mass of buyer and sellers
that enter the environment (NS , NB) to search a matching partner. The optimization program for
the platform will be

max
NS ,NB

NBP
b(NB, NS) +NSP

s(NB, NS)− ϕNBNS

s.t. NS , NB ≥ 0

It is easy to show this program has a solution. Indeed, the support of (NS , NB) is bounded
from below by (0, 0), and from above by the total number of buyers and sellers that can potentially
participate; also its clear the profit function is continuous in both arguments. Then, by Weierstrass
theorem there is a solution for the program.

The contribution to the two-sided market literature is to understand the platform’s optimal
pricing rule in a searching environment like this. Most of the literature so far emphasizes on the
differences between the Lerner conditions coming from a two-sided market vis-a-vis the one from a
one-sided market, and do not study how the optimal pricing rule changes with different assumptions
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on the way trade surplus is generated5; see [21] for a comprehensive analysis. But indeed this is
a serious drawback because we believe that agents (e.g. buyers and sellers) that participate in
a two-sided market industry are just searching for a trading partner. The following proposition
represents a first step in filling this gap.

Proposition 3.1. (i) The optimal pricing rule, associated to an interior solution6, is described by

P b −
[
NS
NB

(Ps + ΞB) + ϕNS

]
Pb

=
1

ξB,P b

P s −
[
NB
NS

(Pb + ΞS) + ϕNB

]
Ps

=
1

ξS,P s

where ξi,P i is the own price elasticity of demand of side i for i ∈ {B,S}, and ΞB (ΞS) is the change

in the trade surplus of the worst seller (buyer) that participates ŝ (b̂)) due to an increase of the
participation of buyers (sellers). (ii) The own price elasticity of demand is inversely related to the
change in the equilibrium probability that the worst type in one side (e.g. ŝ or b̂) forms a match,

due to an increase of participants in the same side of the market, e.g. ξB,P b ∝
(
∂m(F−1

B (1−NB))
∂NB

)−1

and ξS,P s ∝
(
∂n(F−1

S (1−NS))
∂NS

)−1

.

This last proposition contributes in two ways to the literature of two-sided markets. On one
hand, shows that the two-sided marginal revenue on the other side of the market can be decomposed
in two terms; take for example the FOC with respect to NB, there such revenue is ∂P s(NS ,NB)

∂NB
≡

NS
NB

[P s+ΞB]. We obtain that an increase in NB will marginally increase the expected trade surplus
for the worst seller ŝ in ΞB, but will marginally decrease his expected trade surplus in P s because
now more sellers are willing to participate due to the network effects. This implies that the two-
sided marginal revenue on the other side of the market in a search environment can be positive of
negative.

On the other hand, in a search environment the own price elasticity of demand will be inversely
related to the sensitivity of the equilibrium probability the worst type forms a match. This implies
that the mark-up the platform has on one side is proportional to the sensitivity of the equilibrium
probability the worst type, on that side of the market, forms a match. In other words, the mark-up
on one side will be higher the easiest it is to the worst type to form a match after more people, on
that side, decides to participate.

3.2 Surplus Maximizing Pricing Rule

Platforms we observe in reality not always maximize profits, indeed there are many that care about
the trading surplus. For example, governments usually “facilitate” simultaneously the seeking
activities of unemployed workers and of employers that post vacancies by creating job agencies
that reduce search costs, in addition, these agencies have incentives to synthesize the information
they recollect in order to reduce evenmore the search costs. These kind of platforms are interesting
at least for two reasons. First, because they serve as a benchmark for welfare comparisons. And
second, because they are not just theoretically interesting, many non-profit agencies or government
agencies can be understood as surplus maximizing platforms.

5In particular, many authors in this literature assume that trade surplus of agents in one side of the
market depends linearly on the mass of agents that participate on the other side of the market; see [19].

6We will assume the second order conditions are satisfied, see [21].
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Two construct the objective function we must determine the mass of buyers and sellers willing
to participate, and the total social value of the platform. The mass of buyers that participate
is equal to the mass of them whose type is above a threshold value b̂, i.e. NB = Prob{b ≥ b̂};
and the mass of sellers is determined analogously, i.e. NS = Prob{s ≥ ŝ}. On the other hand,
the total social value of the platform is equal to the expected trading surplus from those buyers
and sellers willing to participate minus the cost of providing the service, i.e.

∫ s
ŝ

Ψ(s)
1−FS(ŝ)

fS(s)ds +∫ b
b̂

Φ(b)

1−FB(b̂)
fB(b)db− ϕNBNS .

As with the profit maximizing platform, we can either find the optimal mass of buyers and
sellers willing to participate, e.g. (NB, NS), or find the optimal entry fees, e.g. (P s, P b), that
maximize the social value of the platform. In this case, the entry fee for the buyers is equal to the
marginal change of the expected trading surplus of buyers, this guarantee buyer b̂ will obtain zero
surplus from participating; the entry fee for sellers is determined analogously.

The optimization program for the profit maximizing platform, which is fully derived in next
proposition’s proof, will be

max
NS ,NB

1

NSNB

∫ s

F−1
S (1−NS)

∫ b

F−1
B (1−NB)

[(Psb+ Pbs)n(s)m(b)− c(m(b) + n(s))]fB(b)fS(s)dbds− ϕNSNB

st NS , NB ≥ 0

and its interpretation is straightforward. The first element is the net value of all matches between
buyers b and sellers s, conditional on them willing to participate, and second is the cost of running
the searching environment. The optimal pricing rule we will find echoes [21] because the optimal
social price will include the marginal private cost and the marginal external benefit of including
and additional participant. But our contribution in this particular subject relies on disentangling
the marginal external benefit.

Proposition 3.2. (i) The optimal pricing rule, associated to an interior solution, is described by
the following equations

P b = ϕNS +
∂

∂NB

(∫ s

ŝ

Ψ(s)

1− FS(ŝ)
fS(s)ds

)
(5)

P s = ϕNB +
∂

∂NS

(∫ b

b̂

Φ(b)

1− FB(b̂)
fB(b)db

)
(6)

(ii) Both ∂
∂NB

(∫ s
ŝ

Ψ(s)
1−FS(ŝ)

fS(s)ds
)

and ∂
∂NS

(∫ b
b̂

Φ(b)

1−FB(b̂)
fB(b)db

)
can be split in two, a positive

network effect due to an increase in the number of potential partners with whom to match, and a
marginal cost associated to a reduction in the probability of being accepted.

The optimal social price, as [21] remarked, follows the Pigouvian Standard, to wit, the entry
fee must account for the private marginal private cost and the external (e.g. other’s side of the
platform) marginal benefit7. Vis-a-vis to what the literature on two-sided markets had already
found, we now have a precise characterization of the marginal external benefit under the undeniable
fact that who ever participates in the searching environment will receive a noisy signal from his
matching partner. In particular, we are able to distinguish two different mechanisms through which
the platform affects the environment, e.g. through the expected partner’s type, and through the
equilibrium probability of forming a match.

7See for example [19], [1], [6].

11
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To understand better the external marginal benefit take equation (6) in the previous Proposi-
tion. In the appendix we show that,

∂

∂NB

(∫ b

b̂

Φ(b)

1− FB(b̂)
fB(b)db

)
=

1

NSN2
B

∫ s

F−1
S (1−NS)

∫ b

F−1
B (1−NB)

[Psbn(s)− c]m(b)fB(b)dbfS(s)ds

+
1

NSNB

∫ s

F−1
S (1−NS)

[PsF−1
B (1−NB)n(s)− c]m(F−1

B (1−NB))×

fB(F
−1
B (1−NB))

∂F−1
B (1−NB)

∂NB
fS(s)ds

Each of the elements at the right hand side represents a different channel through which the
platform affects the environment. The first one holds fix the social value coming from the sellers
and quantifies the impact on the equilibrium probability of forming a match. Intuitively, if the
platform allows more buyers to participate, the probability a sellers ends-up with a “worst-type”
buyer increases; recall we assume all sellers have a positive probability of forming a match. The
second element at the right hand side holds fix the impact on this equilibrium probability and
quantifies the impact on the social value coming from sellers. Intuitively, this elements shows the
change in seller’s social value if the number of buyers participating increases.

Finally, we are in shape to compare the optimal pricing rule from the profit maximizing and
surplus maximizing platform. To avoid confusions, denote P sm,J and P pm,J respectively as the
entry fee of the surplus maximizing platform and profit maximizing platform at side J , where J
could denote buyers or sellers.

Lemma 3.2. Denote µJ , for J ∈ {B,S}, as the market power distortion at the side of the market
J. We can decompose the difference between P sm,J and P pm,J as,

P pm,B − P sm,B = µB +
∂

∂NB

(
NSΨ(ŝ)−

∫ s

ŝ

Ψ(s)

1− FS(ŝ)
fS(s)ds

)
(7)

P pm,S − P sm,S = µS +
∂

∂NS

(
NBΦ(b̂)−

∫ b

b̂

Φ(b)

1− FB(b̂)
fB(b)db

)
(8)

Equations (7) and (8) have a nice interpretations. Without loss of generality just consider the
first equation. The first element that explains the gap between is the market power the platform
has en the buyers side. As we showed in Proposition (3.1) this market power is determined by the
change in the equilibrium probability the worst type buyer, e.g. b̂, is accepted when the number of
buyers that participate increases. Though the market power is a well known element in industrial
organization, when we focus on platforms that offer search & match environments it is interesting
to find that this object is in turn determined by the equilibrium probability (its change to be
precise) the worst type forms a match. On the other hand, is difficult to find a parallel in the
search & match literature because there authors usually assume participants are always willing to
participate.

The second element in equation (7) is what [21] call spence distortion. Notice that NSΦ(ŝ) is
the social value from the worst type seller times the mass of sellers participating, equivalently it
is the revenue the profit maximizing platform obtains from those sellers willing to participate. In
addition,

∫ s
ŝ

Ψ(s)
1−FS(ŝ)

fS(s)ds is the social value from the sellers willing to participate. Then, the
spence distortion effect under this environment can be understood as the difference between the
platform’s marginal revenue on the sellers and the marginal social value also on the sellers’ side.

To wrap-up equation (7) interpretation. While the market power on side B is explained from
changes within the side of the buyers, i.e. captures the effect of more buyers on the equilibrium
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probability the worst type buyer forms a match, the second element is explained from changes on
the other side of the market, i.e. captures the effect of more buyers on the difference between the
“private and social” value of those sellers that choose to participate.

3.3 Matching Equilibrium with Unimodal Distribution of Types:
A Numerical Approach

Until now we had studied the case where, for some given pdf’s fB(b), fS(s) and some give conditional
pmf’s (̃m)(θ | b) and ñ(ω | s), the platform chooses the entry fees that maximize his profit function.
Even with this simplified environment8 the solution depends both on the distribution of types and
on the conditional distribution of the signals. Thus, we require to make additional assumptions to
get a flavor of the solution of the program.

We will assume for simplicity that the conditional pmf’s of the signals are m(b) = FB(b) and
n(s) = F(s). Then, we only need to pick the distribution of types. Additionally, we will assume

that b = s = −1, b = s = 1, and that FB(b) = FS(s). Then, we just need to focus on a symmetric
matching equilibrium. To begin, we will assume that the distribution of types is a Uniform(-1,1),
latter we will assume what happens with a Logistic(α, β), where α ∈ [−1, 1] and β ≥ 0.

The distribution of types is a Uniform with support [−1, 1], e.g. s, b ∼ U[−1,1]. Figures (1)
and (2) show in the horizontal axis the mass of buyers and sellers willing to participate (i.e.
NS = NB = N ∈ [0, 1]), the blue line (on top) is the equation that describes the restriction such
that all participants choose to accept any partner they receive, in particular when the function
crosses zero we will find Nall. We showed before that for this equilibrium to exist Nplatform ≤ Nall,
where Nplatform is the mass of buyers and sellers that solve the platform’s optimization program.
The red line (the one below), is the equation that describes the restriction such that all participants
choose to only accept partners with the high signal, and in particular when it crosses the horizontal
axis we will find Nhigh. We already showed that for this equilibrium to exist Nplatform ≥ Nall.
Finally, in Figure (3) we include an additional equation that represents the FCO coming from the
platform’optimization program, the point where is crosses the horizontal axis determines Nplatform.

These first set of figures show that the platform always picks the equilibrium where every buyer
and seller decides to accept any partner they get. The first two figures show that if c > 0 is no
longer the case that Nall = Nhigh, and moreover, they show that each of these threshold point
moves to the left. The third figure shows that even if c = 0, the platform will pick a participation
level bellow Nhigh implying that everyone will accept their current partner. Then, we conclude here
that if the unimodal distribution of types has a constant pdf (like with the uniform distributions),
the platform will decide let in “enough” high type agents such that buyers and sellers realize that
the probability of meeting someone with a negative type is very small.

The distribution of types is logistic, e.g. s, b ∼ (α, β). Figures (4) - (7) show several combina-
tions of (α, β), and in each we plot one small figure similar to Figure (3) and another small figure
with the pdf of the logistic with the particular parameter values.

We find two regularites worth to be mentioned. The first is that the results obtained with the
uniform distribution holds except when at the same time the mean of the distribution is “positive
enough” and the dispersion of the distribution is “small enough” (e.g. beta close to zero). Indeed,
in Figures (4) - (6) we observe that the profit maximizing platform will choose a participation level
(e.g. Nplatform) such that every buyer and seller will accept any partner they receive.

8In a general environment the platform can also choose the joint distribution of θ and ω such that its
marginal distributions are M̃θ and Ñ(ω). This task is the natural next step of the research.
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Figure 1: Restriction U[−1,1] and c = 0 Figure 2: Restrictions U[−1,1] and c > 0

Figure 3: Equilibrium U[−1,1] and c = 0

The second case is associated to distributions where the mean is positive enough and where
the dispersion around the mean is small. This situation represent those cases where there are few
bad buyers and sellers in each population. Figure (7) shows that the profit maximizing platform
will choose a participation level (e.g. Nplatform) such that every buyer and seller will only accept
partners with a high signal. [7] identified this issues and called it the “acceptance curse”, and
refers to the fact that being accepted reduces the potential partner’s type. Then, if most of the
population is of good type, then buyers and sellers will become selective to reduce the impact of
the acceptance curse.

4 Optimal Noise

The initial formulation of the model allowed the platform both to pick the entry fee and the noise,
for buyers and sellers, that maximize its objective function. Previously we found the optimal
pricing rules for the profit maximizing and surplus maximizing platforms taken as given the noise,
e.g. m(b) = Prob{θ = θ | b} and n(s) = Prob{ω = ω | s}, and only imposing the assumption that
buyers (sellers) with a higher type will be more likely to receive a high signal (e.g. θ for buyers and
ω for sellers) than lower type buyers (seller), to wit, m(b)′ > 0 and n(s)′ > 0. In this part we will
tackle this issue under the previous assumption.

The monotonicity assumption is a strong one but greatly simplifies the analysis. The strict
monotonicity of functions m(b) and n(s) on one hand guarantees that the buyers and sellers willing
to participate will use strategies (inside the environment) increasing in types, and provides a simple
characterization of the matching equilibria. On the other hand, as [7] already showed, this assump-
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Carlos Cañón Platforms & Matching with Noisy Signals

Figure 4: Logistic[0, 0.42] and c = 0 Figure 5: Logistic[0.14, 0.42] and c = 0

Figure 6: Logistic[−0.55, 0.42] and c = 0 Figure 7: Logistic[0.67, 0.19] and c = 0

tion guarantees the matching equilibrium show a stochastic positive assortativeness. Then we are
ruling out the possibility the platform decides to implement stochastic negative assortativeness, or
even a combination of both. To wrap-up, the strict monotonicity assumption while greatly simplify
the analysis, also restrict us to consider a stochastic positive assortativeness.

To begin the analysis fix the mass of buyers and sellers willing to participate. Informally
speaking, these platforms do not have the technology to determine the mass of people willing to
participate through the access fee.

4.1 Profit Maximizing Noise

Lemma 4.1. Assume that the functions m(b) and n(s) are strictly increasing, and the mass of
buyers and sellers willing to participate (e.g. NS and NB) is given. Then, the optimal conditional
probability mass functions that maximize profits will be,

Prob{θ = θ | b} =
1

fB(b)
if b > b̃, ḟB(b) < 0

Prob{ω = ω | s} =
1

fS(s)
if s > (̃s), ḟS(s) < 0

where s̃ = c
Pbm(F−1

B (1−NB))
and b̃ = c

Psn(F−1
S (1−NS))

.

The previous lemma shows several features. The optimal noise in one side of the market is just
the inverse of the unconditional density function of types, at that side of the market, for those types
above a certain threshold. In addition, the threshold depends on the mass of participants on the
other side of the market. The caveat is that this optimal path is only optimal for those segments of
the support such that the density function has a strictly decreasing slope. Moreover, we cannot say
something about the other segments of the support of types because the monotonicity assumption
is strict.
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Finally, given the relationship between Prob{Θ = θ | B = b} and the joint density function of
(Θ, B), e.g. gΘ,B(θ, b), if we can determine the optimal path for the former, we also can determine
an optimal path for the latter. Lemma (4.1) implies that the optimal path for the joint density of
(Θ, B), at the point Θ = θ, is one for those buyers above the threshold b̃, and zero for the rest.
Similarly, the optimal path for the joint density of (Ω, S), at the point Ω = ω, is one for those
sellers above the threshold s̃, and zero for the rest.

4.2 Surplus Maximizing Noise

Lemma 4.2. Assume that the functions m(b) and n(s) are strictly increasing, and the mass of
buyers and sellers willing to participate (e.g. NS and NB) is given. Then, (i) the optimal conditional
probability mass functions that maximize surplus will be,

Prob{θ = θ | b} =
Ps

fB(b)(Psb+ Pbs)Ln
(
Psb̄+Pbs
Psb̂+Pbs

) [1− c

∫ b

b̂

fB(z)

Psz + Pbs
dz

]
+

c

Psb+ Pbs

Prob{ω = ω | s} =
Pb

fS(s)(Psb+ Pbs)Ln
(
Psb+Pbs̄
Psb+Pbŝ

) [1− c

∫ s

ŝ

fS(z)

Psb+ Pbz
dz

]
+

c

Psb+ Pbs

and (ii) the strict monotonicity assumption holds if ḟB(b), ḟS(s) < 0, or if c > 0 is “sufficiently
high”.

Two features should be remarked. The optimal path for the surplus maximizing platform is
a smooth function on the buyer’s and seller’s type. This imply that the conditional probability
a buyer (seller), willing to participate, of receiving a high signal is different for all buyers, and
evenmore, for each buyer this probability depends on the seller (buyer) he encounters. In other
words, the optimal conditional probability a participant receives a high signal is a function on the
types of both participants, and not only on one of them.

The second feature is that the strict monotonicity assumption is not trivially satisfied. Lemma
(4.2) shows that the unitary transaction cost (e.g. c > 0) and the slope of the pdf of types (e.g.
ḟB(b) and ḟS(s)) determine whether the optimal path satisfies the assumption or not. This issue
should be analyzed in greater detail. Finally, it is trivial to show that without a unitary transaction
cost (e.g. c = 0), the optimal path is only determined for those regions in the support of types
where the slope of the pdf is negative.

Comparing lemmas (4.1) and (4.2) we observe that while the profit maximizing platform treats
all buyers (sellers) in the same fashion, the surplus maximizing platform does not. Focusing on the
case of sellers, the profit maximizing platform will assign n(s) = 1

fS(s)
if s > s̃ and ḟS(s) < 0. The

role buyers play here is through the threshold s̃ because it depends on the mass of buyers willing
to participate. Then, all sellers above the threshold are equally treated. On the other hand, this
is not true for the surplus maximizing platform because the optimal conditional probability seller
with type s receives a high signal (e.g. ω) is also a function of the buyer’s type he encounters.
Then, the surplus maximizing platform will treat each seller differently depending on the buyer he
encounters inside the searching environment.

5 Conclusion

This papers analyse a profit maximizing platform that offers an environment to two populations
of vertically differentiated buyers and sellers that are willing to engage in trading activities that

16
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can only occur within the environment. We assume that those buyers and sellers that participate,
although they privately know their type, only observe a noisy signal about their partner’s type;
additionally we assume no one observe’s the noisy signal their partner is receiving from them.
Finally we make two assumption about the platform, on one hand we assume they can only charge
a (possibly different) access fee to buyers and sellers, and on the other hand, that the platform
cannot directly run the match.

The platform, by setting the access fees, can indirectly determine the matching equilibrium
through two channels: through the equilibrium probability of forming a match, and through the
expected partner’s type as in [8]. To simplify the exposition we propose an static model, and to
avoid any trivial solution we assume the support of types can take negative values.

Our findings are relevant to two strands of literature. In the two-sided market literature we
show that with a search environment as ours the optimal pricing rule of the profit maximizing
platform changes in two aspects. First, the own price elesticity of demand is determined by the
sensitivity of the equilibrium probability of forming a match. In particular, we show that the mark-
up in any side of the market is proportional to the change in the equilibrium probability of forming
a match (for the worst type on the same side) due to an increase of the participants on the same
side of the market. Second, the two-sided marginal revenue on the other side of the market (see
[21]) is not a strictly positive value. In particular, if network effects are strong enough its likely its
value becomes negative.

In the literature on matching, to our knowledge, we are the first one to analyze the role of a
profit maximizing central planner in the determination of the matching equilibrium. Borrowing the
insights from [7] we show that in our environment there are three possible matching equilibria. Using
a numerical approach we study the symmetric matching equilibrium case with unimodal distribution
of types. We find that in general the profit maximizing platform chooses a participation level such
that every buyer and seller that participates will accept any partner they encounter irrespective of
their signal. Finally, we obtain that if the populations of buyers and sellers is mainly composed
by “good” types, then the profit maximizing platform will choose a level of participation such that
every buyer and sellers that participates will only accept high signal partners.
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Appendix

Proof of Lemma 2.1

Proof. For this we must show that Psa(θ, s)γ(θ, s) = Ps
∫ b
b̂ b∆s(Λb | s) k(θ|b)

1−FB(b̂)
db is continuous and

strictly increasing in θ. As in [7], the continuity is obtained by applying the Lebesgue Dominated
Convergence Theorem (LDCT) as all functions where assumed to be measurable to the appropriate
Borel σ-algebra.

On the other hand, the strictly increasing condition is a consequence of assuming n(s) and m(b)
are strictly increasing functions. More formally, we must show that the conditional density of b
on θ and on being accepted by his current partner, e.g. h(b | θ, s) = ∆s(Λb | s) k(b|θ)

1−FB(b̂)
, satisfy the

MLRP. Indeed this is guaranteed from m′(b) > 0, i.e. for θ > θ and b′ > b

h(b′ | θ, s)
h(b | θ, s)

>
h(b′ | θ, s)
h(b | θ, s)

⇔ k(b′ | θ)
k(b | θ)

>
k(b′ | θ)
k(b | θ)

⇔ m(b′)

m(b)
>

1−m(b′)

1−m(b)

⇔ m(b′) > m(b)

Then, according to Milgrom (1981) proposition 4, we conclude Psa(θ, s)γ(θ, s) is strictly increasing
in θ.

Finally, focusing in the interesting case where Psa(θ, s)γ(θ, s) > 0 and Psa(θ, s)γ(θ, s) < 0
there must be a θ ≤ θ̂(s) < θ such that Psa(θ̂(s), s)γ(θ̂(s), s) = 0, such that if θ̂(s) = θ then the
seller s will accept any buyer, and will only accept partners with the high signal otherwise.

A similar argument can be elaborated for each buyer. That is, there must be a ω(b) ≤ ω̂(b) <
ω(b) such that Pbd(ω̂(b), b)α(ω̂(b), b) = c, such that if ω̂(b) = ω then the buyer b will accept any
seller, and will only accept partners with the high signal otherwise.

Proof of Proposition 2.1

Proof. To show there exists a pure strategy equilibrium in increasing strategies we must show some
regularity conditions hold (see [2]), and the utility function of all player should satisfy the SCP-
IR condition in own type and actions. The regularity conditions are satisfied because all types’
densities are atomless, bounded, and the actions sets are closed and bounded. Moreover, applying
the Lebesgue Dominated Convergence Theorem its true that if θ̂n(s) → θ̂(s) and ω̂n(b) → ω̂(b),
then U1(θ̂n(s) | s, ω̂n(·)) → U1(θ̂(s) | s, ω̂(·)) and U2(ω̂n(b) | b, θ̂n(·)) → U2(ω̂(b) | b, θ̂(·)). These
conditions guarantee expected payoffs are continuous and well defined objects when their partners
use increasing strategies.

To show SCP-IR condition holds on Player 1’s objective function we must show that ∀θ > θ
and ∀sH > sL, if U1(θ(sL) | sL, ω̂(·)) ≥ U1(θ(sL) | sL, ω̂(·)) holds, then U1(θ(sH) | sH , ω̂(·)) ≥
U1(θ(sH) | sH , ω̂(·)) also holds.

Then,

U1(θ(sL) | sL, ω̂(·)) ≥ U1(θ(sL) | sL, ω̂(·))
−cm̃(θ) + Psa(θ, sL)γ(θ, sL)m̃(θ) ≥ −c(m̃(θ) + (1− m̃(θ))) + Psa(θ, sL)γ(θ, sL)m̃(θ)

+ Psa(θ, sL)γ(θ, sL)(1− m̃(θ))

c ≥ Psa(θ, sL)γ(θ, sL)
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and,

U1(θ(sH) | sH , ω̂(·)) ≥ U1(θL(sH) | sH , ω̂(·))
−cm̃(θ) + Psa(θ, sH)γ(θ, sH)m̃(θ) ≥ −c(m̃(θ) + (1− m̃(θ))) + Psa(θ, sH)γ(θ, sH)m̃(θ)

+ Psa(θ, sH)γ(θ, sH)(1− m̃(θ))

c ≥ Psa(θ, sH)γ(θ, sH)

All boils down to show that Psa(θ, s)γ(θ, s) is decreasing in s. After simple manipulations the

last expression can be written as
∫ b
b̂ b∆s(Λb | s)Ps k(b|θ)

1−FB(b̂)
db. Finally, taking the derivative with

respect to s we obtain

Ps

1− FB(b̂)

∫ b

b̂
b
∂∆s(Λb | s)

∂s
k(b | θ)db

and thus we need that ∂∆s(Λb|s)
∂s < 0. Notice that ω ∈ Λb iff ω ≥ ω̂(b), thus ∆s(Λb | s) is equivalent

to Prob{ω ≥ ω̂(b) | s} = 1− Ñ(ω̂(b) | s), then what we need is that ∂Ñ(ω̂(b)|s)
∂s > 0. This condition

is satisfied because we assumed that n(s) is strictly increasing in s. To wrap-up, we showed that
Player 1’s utility function satisfy the SCP-IR in own type and action if n(s)′ > 0. Using similar
arguments, if m(b)′ > 0 we can guarantee Player 2’s utility function satisfy the SCP-IR in own
type and action.

We can conclude that there exists a monotone pure strategy equilibrium of the two-player
bayesian game, then this implies there exists a matching equilibrium (θ̂∗(s), ω̂∗(b)) with strategies
increasing in types.

Proof of Lemma 2.2

Proof. We just need to compare the seller’s (buyer’s) expected utility from participating in the
platform if they decide to only accept partners with high signal, with the expected utility if they
decide to accept any partner they might encounter. We will concentrate on the case of seller s, the
argument for any buyer holds analogously.

The expected payoff of a seller from accepting only the high signal is obtained by replacing θ̂ = θ
into U1(θ | s, ω̂(·)), and the expected payoff from accepting any buyer is obtained by computing
Eθ[U1(θ | s, ω̂(·))] = U1(θ | s, ω̂(·))m̃(θ) + U1(θ | s, ω̂(·))(1− m̃(θ)).

Now we can establish the condition that determines seller s optimal decision,

U1(θ | s, ω̂(·)) T Eθ[U1(θ | s, ω̂(·))]

Psa(θ, s)γ(θ, s)m̃(θ)− cm̃(θ) T Psa(θ, s)γ(θ, s)m̃(θ) + Psa(θ, s)γ(θ, s)(1− m̃(θ))2 − c(1− m̃(θ)m̃(θ))

c T Psa(θ, s)γ(θ, s) (9)

The symmetric matching equilibria in increasing strategies is characterized by a threshold
(ηs, ηb), where ηi ∈ [̂i, i] for i ∈ {b, s}, such that any buyer with a higher type (b > ηb) will
only accept the high signal ω, and any buyer with a lower type (b < ηb) will accept both signals
{ω, ω}. Similarly for the sellers, any seller whose type is high enough (s > ηs) will only accept high
signals θ, and any seller with a lower type (s < ηs) will accept both signals {θ, θ}. Following [7],
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Carlos Cañón Platforms & Matching with Noisy Signals

γ(θ, s) =

∫ ηb
b̂

bm(b)fB(b)db+ n(s)
∫ b
ηb
bm(b)fB(b)db∫ ηb

b̂
m(b)fB(b)db+ n(s)

∫ b
ηb
m(b)fB(b)db

γ(θ, s) =

∫ ηb
b̂

b(1−m(b))fB(b)db+ n(s)
∫ b
ηb
b(1−m(b))fB(b)db∫ ηb

b̂
(1−m(b))fB(b)db+ n(s)

∫ b
ηb
(1−m(b))fB(b)db

a(θ, s) =

∫ ηb
b̂

m(b)fB(b)db+ n(s)
∫ b
ηb
m(b)fB(b)db∫ b

b̂ m(b)fB(b)db

a(θ, s) =

∫ ηb
b̂
(1−m(b))fB(b)db+ n(s)

∫ b
ηb
(1−m(b))fB(b)db∫ b

b̂ (1−m(b))fB(b)db

analogous expressions can be obtained for d(ω, b) and α(ω, b) for ω ∈ {ω, ω}, and all depend on ηs.

Equilibrium (i). If every buyer and seller that participates accepts his partner, then ηb = b
and ηs = s. Using equation (9) and the fact that b̂ = F−1

B (1−NB) and ŝ = F−1
S (1−NS), we obtain

for sellers,

c < Psa(θ, s)γ(θ, s)

c < Ps

∫ b
b̂ b(1−m(b))fB(b)db∫ b
b̂ (1−m(b))fB(b)db

≡ AS(NB)

and for buyers,

c < Pb

∫ s
ŝ s(1− n(s))fS(s)ds∫ s
ŝ (1− n(s))fS(s)ds

≡ AB(NS)

Finally, define (Nall
S , Nall

B ) as the mass of buyers and sellers that satisfy the above inequalitites.
This equilibrium will exist if Ni < Nall

i for i ∈ {b, s}.
Equilibrium (ii). If every buyer and seller that participates only accepts partners with the

high type, then ηb = b̂ and ηs = ŝ. Using equation (9) we obtain for sellers,

c > Psa(θ, s)γ(θ, s)

c > Psn(ŝ)

∫
b̂b
b(1−m(b))fB(b)db∫

b̂b
(1−m(b))fB(b)db

c ≡ BB(NB, NS)

and for buyers,

c > Pbm(b̂)

∫
ŝs s(1− n(s))fS(s)ds∫
ŝs(1− n(s))fS(s)ds

≡ BS(NB, NS)

Define (Nhigh
S , Nhigh

B ) as the mass of buyers and sellers that satisfy the above inequalities. This

equilibrium will exist if Ni > Nhigh
i for i ∈ {b, s}.

Equilibrium (iii). This is the situation where some buyers (sellers) only accepts partners with
the high signal, and the rest accepts any partner; then, ηb ∈ (b̂, b) and ηs ∈ (ŝ, s). Using equation
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(9) we obtain for sellers,

c = Psa(θ, ηs)γ(θ, ηs)

c = Ps

∫ ηb
b̂

b(1−m(b))fB(b)db+ n(ηs)
∫ b
ηb
b(1−m(b))fB(b)db∫ b

b̂ (1−m(b))fB(b)db

and for buyers,

c = Pb

∫ ηs
ŝ s(1− n(s))fS(s)ds+m(ηb)

∫ s
ηs
s(1− n(s))fS(s)ds∫ s

ŝ (1− n(s))fS(s)ds

Define (ηs, ηb) as the threshold values that solve the desired equalities. Moreover, this equilibrium

(N both
S , N both

B ) will exist if N both
i ∈ [Nall

i , Nhigh
i ] for i ∈ {b, s}.

Proof of Lemma 3.1

Proof. We will focus on the case of a seller s. Using the fact that Ps = Eθv(θ, ŝ) and ŝ = F−1
S (1−

NS), we obtain that

P s = Eθv(θ, F
−1
S (1−NS))

=
∑
θ∈Λs

Ps

∫ b

F−1
B (1−NB)

b∆s(Λb | F−1
S (1−NS))

k(b | θ)
1− FB(b̂)

m̃(θ)

1− FB(b̂)
db− c

1− FB(b̂)

∑
θ∈Λs

m̃(θ)

=
1

1− FB(b̂)


∫ b

F−1
B (1−NB)

Psb∆s(Λb | F−1
S (1−NS))∆b(Λs | b)fB(b)db− c

∫ b

b̂

∑
θ∈Λs

m̃(θ | b)fB(b)db


=

1

1− FB(b̂)

∫ b

F−1
B (1−NB)

[
Psb∆s(Λb | F−1

S (1−NS))− c
]
∆b(Λs | b)fB(b)db

=
1

1− FB(b̂)

∫ ηb(NS ,NB)

F−1
B (1−NB)

[
Psb∆s(Λb | F−1

S (1−NS))− c
]
∆b(Λs | b)fB(b)db

+
1

1− FB(b̂)

∫ b

ηb(NS ,NB)

[
Psb∆s(Λb | F−1

S (1−NS))− c
]
∆b(Λs | b)fB(b)db

now you can use the fact that Λb = {ω, ω} iff ω̂(b) = ω, and Λb = {ω} iff ω̂(b) > ω. Thus, you can
replace ∆s(Λb | s) with (1− Ñ(ω̂(b) | s)). Using similar arguments, you can replace ∆b(Λs | b) with
(1− M̃(θ̂(s) | b)).

P s =
1

1− FB(b̂)

∫ ηb(NS ,NB)

F−1
B (1−NB)

[
Psb(1− Ñ(ω̂(b) | F−1

S (1−NS)))− c
]
(1− M̃(θ̂(ŝ) | b))fB(b)db

+
1

1− FB(b̂)

∫ b

ηb(NS ,NB)

[
Psb(1− Ñ(ω̂(b) | F−1

S (1−NS)))− c
]
(1− M̃(θ̂(ŝ) | b))fB(b)db

finally we can use the fact that θ̂(ŝ) = θ, and that ω̂(b) = ω when b ∈ [F−1
B (1 −NB), ηb(NS , NB)]

and that ω > ω̂(b) > ω when b ∈ [ηb(NS , NB), b].
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Then,

P s =
1

1− FB(b̂)

∫ ηb(NS ,NB)

F−1
B (1−NB)

[
Psb(1− Ñ(ω | F−1

S (1−NS)))− c
]
(1− M̃(θ | b))fB(b)db

+
1

1− FB(b̂)

∫ b

ηb(NS ,NB)

[
Psb(1− Ñ(ω | F−1

S (1−NS)))− c
]
(1− M̃(θ | b))fB(b)db

=
1

1− FB(F
−1
B (1−NB))

∫ b

F−1
B (1−NB)

[
Psb(1− Ñ(ω | F−1

S (1−NS)))− c
]
(1− M̃(θ | b))fB(b)db

=
1

1− (1−NB)

∫ b

F−1
B (1−NB)

[
Psb(1− ñ(ω | F−1

S (1−NS)))− c
]
(1− m̃(θ | b))fB(b)db

=
1

NB

∫ b

F−1
B (1−NB)

[
Psbñ(ω | F−1

S (1−NS))− c
]
m̃(θ | b)fB(b)db

=
1

NB

∫ b

F−1
B (1−NB)

[
Psbn(F−1

S (1−NS))− c
]
m(b)fB(b)db

≡ P s(NS , NB)

and analogously we can construct the fees for the buyers as,

P b =
1

NS

∫ s

F−1
S (1−NS)

[
Pbsm(F−1

B (1−NB))− c
]
n(s)fS(s)ds

≡ P b(NS , NB)

Proof of Proposition 3.1

Proof. The FOC with respect to NB will be,

0 = P b(NS , NB) +
NBPb

NS

∫ s

F−1
S (1−NS)

sn(s)fS(s)ds
∂m(F−1

B (1−NB))

∂NB

− NS

N2
B

∫ b

F−1
B (1−NB)

[Psbn(F−1
S (1−NS))− c]m(b)fB(b)db

− NS

NB
m(F−1

B (1−NB))fB(F
−1
B (1−NB))

∂F−1
B (1−NB)

∂NB

(
Psn(F−1

S (1−NS))F
−1
B (1−NB)− c

)
− ϕNS

noticing that

∂P b(NS , NB)

∂NB
=

Pb

NS

∫ s

F−1
S (1−NS)

sn(s)fS(s)ds
∂m(F−1

B (1−NB))

∂NB

ΞB = m(F−1
B (1−NB))fB(F

−1
B (1−NB))

∂F−1
B (1−NB)

∂NB
(Psn(F−1

S (1−NS))F
−1
B (1−NB)− c)
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Carlos Cañón Platforms & Matching with Noisy Signals

the first order condition is reduced to,

P b(NS , NB)−
NS

NB
(P s(NS , NB) + ΞB)− ϕNS = −NB

∂P b(NS , NB)

∂NB

P b(NS , NB)−
[
NS
NB

(P s(NS , NB) + ΞB) + ϕNS

]
P b(NS , Nb)

= − NB

P b(NS , NB)

∂P b(NS , NB)

∂NB

Then,

P b −
[
NS
NB

(P s + ΞB) + ϕNS

]
P b

=
1

ξB,P b

and analogously the seller’s optimal pricing rule is,

P s −
[
NB
NS

(P b + ΞS) + ϕNB

]
P s

=
1

ξS,P s

where ΞS = n(F−1
S (1−NS))fS(F

−1
S (1−NS))

∂F−1
S (1−NS)
∂NS

(Pbm(F−1
B (1−NB))F

−1
S (1−NS)− c).

Proof of Proposition 3.2

Proof. Lets start with the optimization program. The platform’s social value is,

SV (NS , NB) =

∫ s

ŝ

1

1− FB(b̂)

∑
θ∈Λs

[Psa(θ, s)γ(θ, s)− c]m̃(θ)
fS(s)

1− FS(ŝ)
ds

+

∫ b

b̂

1

1− FS(ŝ)

∑
ω∈Λb

[Pbd(ω, b)α(ω, b)− c]ñ(ω)
fB(b)

1− FB(b̂)
db

− ϕNSNB

SV (NS , NB) =

∫ s

ŝ

∫ b

b̂

Psb

(1− FB(b̂))(1− FS(ŝ))
∆s(Λb | s)

∑
θ∈Λs

m̃(θ | b)fB(b)fS(s)dbds

+

∫ b

b̂

∫ s

ŝ

Pbs

(1− FB(b̂))(1− FS(ŝ))
∆b(Λs | b)

∑
ω∈Λb

ñ(ω | s)fS(s)fB(b)dsdb

− c

(1− FB(b̂))(1− FS(ŝ))

[∫ s

ŝ

∫ b

b̂
m̃(θ | b)fB(b)dbfS(s)ds+

∫ b

b̂

∫ s

ŝ
ñ(ω | s)fS(s)dsfB(b)db

]
− ϕNSNB

now we can replace ŝ = F−1
S (1 − NS) and b̂ = F−1

B (1 − NB), also can replace ∆s(Λb | s) with

1−Ñ(ω̂(b) | s) and ∆b(Λs | b) with 1−M̃(θ̂(s) | b), and using Fubini’s Theorem the new expression
for the platform’s social value is,

SV (NS , NB) =
1

NSNB

[∫ s

F−1
S (1−NS)

∫ b

F−1
B (1−NB)

(Psb+ Pbs)(1− Ñ(ω̂(b) | s))(1− M̃(θ̂(s) | b))

]
− c

NSNB

[
(1− Ñ(ω̂(b) | s)) + (1− M̃(θ̂(s) | b))

]
− ϕNSNB
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finally, using the fact θ̂(s) = θ if s ∈ [ŝ, ηs] and θ < θ̂(s) < θ if s ∈ [ηs, s], and ω̂(b) = ω if b ∈ [b̂, ηb]
and ω < ω̂(b) < ω if b ∈ [ηb, b], then the optimization program of the surplus maximizing platform
will be,

max
NS ,NB

1

NSNB

[∫ s

F−1
S (1−NS)

∫ b

F−1
B (1−NB)

(Psb+ Pbs)n(s)m(b)− c(m(b) + n(s))

]
− ϕNSNB

st NS , NB ≥ 0

Now continue with the FOC, without loss of generality just consider the one wrt NB.

ϕNS = − 1

NSN2
B

∫ s

F−1
S (1−NS)

∫ b

F−1
B (1−NB)

[Psbn(s)− c]m(b)fB(b)dbfS(s)ds

− 1

NSNB

∫ s

F−1
S (1−NS)

[PsF−1
B (1−NB)n(s)− c]m(F−1

B (1−NB))fB(F
−1
B (1−NB))

∂F−1
B (1−NB)

∂NB
fS(s)ds

− 1

NSN2
B

∫ b

F−1
B (1−NB)

∫ s

F−1
S (1−NS)

[Pbsm(b)− c]n(s)fS(s)dsfB(b)db

− 1

NSNB

∫ s

F−1
S (1−NS)

[Pbsm(F−1
B (1−NB))− c]n(s)fB(F

−1
B (1−NB))

∂F−1
B (1−NB)

∂NB
fS(s)ds

notice that the last two elements at the right hand side are nothing that the derivate of
∫ b
b̂

Φ(b)

1−FB(b̂)
fB(b)db

wrt to the mass of buyers willing to participate, e.g. NB. Thus, they are equal to the buyers’ en-
try fee, e.g. P b. Similarly, the first two elements of the right hand side are the derivative of∫ s
ŝ

Ψ(s)
1−FS(ŝ)

fS(s)ds wrt to NB. Thus,

P b = ϕNS − 1

NSN2
B

∫ s

F−1
S (1−NS)

∫ b

F−1
B (1−NB)

[Psbn(s)− c]m(b)fB(b)dbfS(s)ds

− 1

NSNB

∫ s

F−1
S (1−NS)

[PsF−1
B (1−NB)n(s)− c]m(F−1

B (1−NB))fB(F
−1
B (1−NB))

∂F−1
B (1−NB)

∂NB
fS(s)ds

= ϕNS +
∂

∂NB

(∫ s

ŝ

Ψ(s)

1− FS(ŝ)
fS(s)ds

)
and analogously,

P s = ϕNB +
1

N2
SNB

∫ b

F−1
B (1−NB)

∫ s

F−1
S (1−NS)

[Pbsm(b)− c]n(s)fS(s)dsfB(b)db

+
1

NSNB

∫ b

F−1
B (1−NB)

[PbF−1
S (1−NS)m(b)− c]n(F−1

S (1−NS))fS(F
−1
S (1−NS))dsfB(b)db

= ϕNB +
∂

∂NS

(∫ b

b̂

Φ(b)

1− FB(b̂)
fB(b)db

)

Proof of Lemma 3.2
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Proof. Starting with the profit maximizing pricing rule add and substract the surplus maximizing
price,

P pm,b − P sm,b = −P bNB

P b

∂P b

∂NB
+

NS

N2
B

∫ b

F−1
B (1−NB)

[Psbn(F−1
S (1−NS))− c]m(b)fB(b)db

+
NS

NB
m(F−1

B (1−NB))fB(F
−1
B (1−NB))

∂F−1
B (1−NB)

∂NB
[Psn(F−1

S (1−NS))F
−1
B (1−NB)− c]

− 1

NSN2
B

∫ s

F−1
S (1−NS)

∫ b

F−1
B (1−NB)

[Psbn(s)− c]m(b)fB(b)dbfS(s)ds

−
∫
NSNB

∫ s

F−1
S (1−NS)

[PsF−1
B (1−NB)n(S)− c]m(F−1

B (1−NB))fB(F
−1
B (1−NB))×

∂F−1
B (1−NB)

∂NB
fS(s)ds

denoting µB = −P b NB

P b
∂P b

∂NB
as the platform’s market power,

P pm,b − P sm,b = µB +
1

NB
{NS

NB

∫ b

F−1
B (1−NB)

[Psbn(F−1
S (1−NS))− c]m(b)fB(b)db

− 1

NSNB

∫ s

F−1
S (1−NS)

∫ b

F−1
B (1−NB)

[Psbn(s)− c]m(b)fB(b)dbfS(s)ds}

+
1

NB
{NS [Psn(F−1

S (1−NS))F
−1
B (1−NB)− c]m(F−1

B (1−NB))fB(F
−1
B (1−NB))

∂F−1
B (1−NB)

∂NB

− 1

NS

∫ s

F−1
S (1−NS)

[PsF−1
B (1−NB)n(s)− c]m(F−1

B (1−NB))fB(F
−1
B (1−NB))×

∂F−1
B (1−NB)

∂NB
fS(s)ds}

= µB +
1

NB

(
NSP

pm,s −
∫ s

F−1
S (1−NS)

Ψ(s)

1− FS(ŝ)
fS(s)ds

)

+ {NS

NB
[Psn(F

−1
S (1−NS))F

−1
B (1−NB)− c]

− 1

NSNB

∫ s

F−1
S (1−NS)

[Psn(s)F−1
B (1−NB)− c]fS(s)ds} ×

m(F−1
B (1−NB))fB(F

−1
B (1−NB))

∂F−1
B (1−NB)

∂NB

thus finally,

P pm,b − P sm,b = µB +
∂

∂NB

(
NSP

pm,s −
∫ s

F−1
S (1−NS)

Ψ(s)

1− FS(ŝ)
fS(s)ds

)

and analogously,

P pm,s − P sm,s = µS +
∂

∂NS

(
NBP

pm,b −
∫ b

F−1
B (1−NB)

Φ(b)

1− FB(b̂)
fB(b)db

)
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Proof of Lemma 4.1

Proof. There is relationship between the conditional pmf of θ, conditional on b (e.g. Prob{θ = θ |
b} = m(b)), and the joint density of (Θ, B) (e.g. gΘ,B(θ, b)),

gΘ,B(θ, b) = Prob{Θ = θ | B = b}fB(b)
= m̃(θ | b)fB(b)

similarly we can define a relationship between the conditional pmf of ω, conditional on s (e.g.
Prob{ω = ω | s} = n(s)), and the joint density of (Ω, S) (e.g. gΩ,S(ω, s)),

gΩ,S(ω, s) = Prob{Ω = ω | S = s}fS(s)
= ñ(ω | s)fS(s)

Then we can either pose the optimization program in terms of {m̃(θ | b), ñ(ω, s)} = {m(b), n(s)},
or in terms of {gΘ,B(θ, b), gΩ,S(ω, s)}. In this version I will pick the latter because we think its more
natural that the platform chooses the joint density functions between the noise and the type for
both buyers and sellers. To simplify notation define gΘ,B(θ, b) = gB(b) and gΩ,S(ω, s) = gS(s).

The optimization program is,

max
gB(b),gS(s)

NB

NS

∫ s

F−1
S (1−NS)

[
Pbs

gB(F
−1
B (1−NB))

fB(F
−1
B (1−NB))

− c

]
gS(s)ds+

NS

NB

∫ b

F−1
B (1−NB)

[
Psb

gS(F
−1
S (1−NS))

fS(F
−1
S (1−NS))

− c

]
gB(b)db

st gS(s), gB(b) ∈ [0, 1]

the solution of this problem is quite simple because it must be at each pair (b, s), and because its
a bang-bang solution. Thus,

gS(s) =


1 if s > s̃

anything if s = s̃
0 if s < s̃

gB(b) =


1 if b > b̃

anything if b = b̃

0 if b < b̃

where s̃ =
cfB(F−1

B (1−NB))

PbgB(F−1
B (1−NB))

and b̃ =
cfS(F

−1
S (1−NS))

PsgS(F
−1
S (1−NS))

. This imply that

n(s) =


1

fS(s)
if s > s̃ & ḟS(s) < 0

anything if s = s̃
0 if s < s̃

n(b) =


1

fB(b) if b > b̃ & ḟB(b) < 0

anything if b = b̃

0 if b < b̃
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notice that the additional condition ḟS(s), ḟB(b) < 0 is coming from the strict monotonicity as-
sumption of functions ṁ(b), ṅ(s) > 0.

Proof of Lemma 4.2

Proof. As we mentioned in the previous proof, we can either write the optimization program in
terms of {m̃(θ | b), ñ(ω, s)} = {m(b), n(s)}, or in terms of {gΘ,B(θ, b), gΩ,S(ω, s)}. In this version I
will pick the latter because we think its more natural that the platform chooses the joint density
functions between the noise and the type for both buyers and sellers. To simplify notation define
gΘ,B(θ, b) = gB(b) and gΩ,S(ω, s) = gS(s).

The optimization program is,

max
GB(b),GS(s)

1

NSNB

∫ s

F−1
S (1−NS)

∫ b

F−1
B (1−NB)

[(Psb+ Pbs)gS(s)gB(b)− c(gB(b)fS(s) + gS(s)fB(b))]dbds

st gB(b), gS(s) ∈ [0, 1]

where dGB(b)
db = gB(b) and

dGS(s)
ds = gS(s). The couple of euler equations yield,

1

NSNB

[(
Psb+ Pbs

)
gB(b)− cfB(b)

]
= K1

1

NSNB

[(
Psb+ Pbs

)
gS(s)− cfS(s)

]
= K2

where K1,K2 are two constants of integration. Then,

gB(b) =
K1NSNB + cfB(b)

Psb+ Pbs

gS(s) =
K2NSNB + cfS(s)

Psb+ Pbs

Taking the first euler equation one obtains,∫
dGB(b) =

∫
K1NSNB + cfB(b)

Psb+ Pbs
db

GB(b) =
K1NSNB

Ps
Ln(Psb+ Pbs) + c

∫
fB(b)

Psb+ Pbs
db+K3

where K3 is another constant of integration. Using the boundary conditions, i.e. GB(b) = GB

and GB(b̂) = ĜB, we obtain that K1 = Ps

NSNBLn
(

Psb+Pbs

Psb̂+Pbs

) [GB − ĜB −
∫ b
b̂

fB(b)
Psb+Pbs

db
]
. Finally, the

optimal gB(b) will be

gB(b) ≡ gΘ,B(θ, b) =
Ps

(Psb+ Pbs)Ln
(
Psb+Pbs
Psb̂+Pbs

) [1− c

∫ b

b̂

fB(b)

Psb+ Pbs
db

]
+ c

fB(b)

Psb+ Pbs

and finally,

m(b) ≡ Prob{θ = θ | b} =
Ps

fB(b)(Psb+ Pbs)Ln
(
Psb+Pbs
Psb̂+Pbs

) [1− c

∫ b

b̂

fB(z)

Psz + Pbs
dz

]
+

c

Psb+ Pbs
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and analogously,

n(s) ≡ Prob{ω = ω | s} =
Pb

fS(s)(Psb+ Pbs)Ln
(
Psb+Pbs
Psb+Pbŝ

) [1− c

∫ s

ŝ

fS(z)

Psb+ Pbz
dz

]
+

c

Psb+ Pbs

Finally we need to check the conditions such that the strict monotonicity assumption holds.
We have that,

ṁ(b) > 0 iff 0 > Ps +
ḟB(b)

fB(b)
(Psb+ Pbs) +

cfB(b)Ln
(
Psb+Pbs
Psb̂+Pbs

)
[
1− c

∫ b
b̂

fB(z)
Psz+Pbs

dz
]

ṅ(s) > 0 iff 0 > Pb +
ḟS(s)

fS(s)
(Psb+ Pbs) +

cfS(s)Ln
(
Psb+Pbs
Psb+Pbŝ

)
[
1− c

∫ b
b̂

fS(z)
Psb+Pbz

dz
]

notice the strict monotonicity assumption holds if ḟB(b), ḟS(s) < 0, or if c > 0 is “sufficiently
high”.
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