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Abstract

This paper derives a link between the forecasts of professional forecasters and a DSGE
model. I show that the forecasts of a professional forecaster can be incorporated to the state
space representation of the model by allowing the measurement error of the forecast and the
structural shocks to be correlated. The parameters capturing this correlation are reduced
form parameters that allow to address two issues i) How the forecasts of the professional
forecaster can be exploited as a source of information for the estimation of the model and
ii) How to characterize the deviations of the professional forecaster from an ideal complete
information forecaster in terms of the shocks and the structure of the economy.
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1 Introduction

The people in the economy are continuously forming and revising expectations, the majority is
thinking about the probability of �nding a job in the next month; or how much their salaries will
rise; or the evolution of the interest rate of their debt. While some others, cause of the nature of
their business, devote time and e�ort to form well informed expectations about macroeconomic
aggregates: such as CPI in�ation or GDP growth rate. People of the latter kind sometimes
publish forecasts of economic variables�declare their expectations1�and there exists also surveys
that collect these forecasts2 such as the Federal Reserve and the European Central Bank surveys
of professional forecasters.

The surveys have been used to characterize, from a merely statistical standpoint, the forecast
accuracy and the forecast error of the professional forecasters (see Bowles, Friz, Genre, Kenny,

∗I gratefully acknowledge the comments of Norberto Rodriguez, Julian Perez and Sergio Ocampo. Discussions
of this topic with Andrés González and Lawrence Christiano were crucial for this research. All remaining errors
are my own.

1Although not every published forecast could be considered as some revealed expectations because of the
di�erent nature that may have the loss function of the forecaster. For the case of Professional forecasters see
Ottaviani and Sorensen (2006), they show that the PF might have incentives to deviate from their best possible
forecast.

2Some of the respondents of the surveys does not publish their forecast and their identi�cation is not revealed
when the results of the surveys are published. Therefore, they do not have the incentives discussed in Ottaviani
and Sorensen (2006) to have forecasts di�erent from their expectations.
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Meyler, and Rautanen (2007) and Stark (2010)) and also as a source of information to con-
struct atheoretical forecasting models (see Genre, Kenny, Meyler, and Timmermann (2010)). I
depart from previous studies and derive a methodology that belongs to �Rational Expectations
Econometrics� which Sargent (1989) refers to as:

�Rational expectations econometrics� aims to interpret economic time series in terms
of objects that are meaningful to economists, namely, parameters describing pref-
erences, technologies, information sets, endowments, and equilibrium concepts or
coordination mechanisms.

Using a Dynamic and Stochastic General Equilibrium models (DSGE) I address simultaneously
two issues:

i) How the forecasts of the Professional forecasters (Henceforth PF) can be exploited as a
source of information for the estimation of the model.

ii) Characterize the deviations of the PF from an ideal complete information forecaster in
terms of the shocks and the structure of the economy.

For both issues I stand as an econometrician with a DSGE model for the economy and a set
of observable variables that include the forecasts from the PF.

Previous articles that have addressed indirectly3 the �rst topic are Giannoni and Boivin
(2005) and González, Mahadeva, Rodríguez, and Rojas (2009). To our knowledge there is not
in the literature a tentative answer to the second question.

Giannoni and Boivin (2005) show in a general form how to include a �rich� data set for
the estimation of a DSGE model using the data as indicator variables of latent factors; quite
a proper interpretation of the information contained in a forecast. Nevertheless, misses the
particular details present in the case of PF that, as I show, if the purpose is i are relevant for
the speci�cation of the measurement equation4 and to construct priors for the parameters.

González, Mahadeva, Rodríguez, and Rojas (2009) proposes a methodology to include data
about the future, such as forecasts from other models, in a DSGE model for forecasting. The
methodology don't incorporate the possible correlation of the measurement errors with the
structural shocks of the model. I show here that in the case of PF this correlation emerges
naturally, is informative and not negligible.

The strategy to solve the issues is based on two alternative speci�cations for the PF. The �rst
one is a structural speci�c case and the other a reduced form general case. For the �rst type of
PF I suppose that he di�ers with the econometrician only in the information set; for the general
case the PF might have also a di�erent model of the economy5. Regarding the �rst issue �i� I
show for both speci�cations how to incorporate the forecasts of the PF as observable variables
in the model and the implied log-likelihood function. It turns out that a speci�c structure of
the measurement error must be speci�ed with the main feature that the structural shocks of the
model and the measurement error are correlated.

The �rst speci�cation is as an extension to Sargent (1989), who shows how to obtain the
likelihood function of the model for two di�erent speci�cations of the statistical agency in charged
to publish the data. I include also the PF, which could be thought as a statistical agency
that also publishes forecasts. As the forecasts are not straightforward indicators of the state

3In a general framework and not referring speci�cally to PF.
4I refer here to the state space representation of the model.
5I refer to this case as the reduced form general case because I don't show explicitly the model of the economy

that the PF has. Instead of this I show his reduced form forecast function.
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of the economy the signal extraction problem is richer: reveals features of the PF relevant
for estimation. On the other hand, the second speci�cation is a general case of the previous
extension that allow us to show the robustness of our �ndings.

I solve the second issue �ii� characterizing the corresponding measurement error term of
the PF forecasts. The measurement errors are the deviations of the PF relative to an ideal
forecaster and are found to follow a VAR(1) process. Furthermore, I show how the reduced
form parameters contained in the VAR measure the magnitude and persistence in which each
economic shock induce a di�erence between the PF and the ideal forecaster.

Previous articles such as Ireland (2004) have proposed to model the measurement errors
with a VAR process, in what is known as the DSGE-VAR literature (see de Córdoba and Torres
(2009)). In Ireland (2004) the shocks of the VAR process are exogenous innovations not related to
the theoretical model. I depart from the previous studies because the shocks of the VAR process
are found to be the structural shocks of the model and shocks related to the measurement errors
of the PF information.

After describing a general setup with the model and �ltering equations I present the likelihood
function, the VAR process of the measurement errors and it´s reduced form parameters for each
of the PF speci�cations. I provide concrete illustration of how this reduced form parameters
capture the di�erence between the PF and the ideal complete information forecaster.

2 General Setup

Here I set some notation for the economic model, the �ltering equations and the log-likelihood
function. From this general setup the econometrician and the �rst speci�cation of the PF are
modeled.

There is an economic model with rational expectations whose equilibrium can be repre-
sented as a covariance stationary stochastic process. Speci�cally, the model equilibrium can be
represented as

xt+1 = Txt + εt (1)

where xt is a n×1 vector of variables, the matrix T is a function of the parameters of the model
and εt is a n× 1 vector of structural shocks whose expected value and covariance matrices are
characterized by:

E{εtε′s} =

{
Q for t = s

0 for t 6= s

E{εt} = 0 (2)

where E{.} stands as the expectational operator. The economic model is completely represented
by (1) and (2).

Related to those variables of the model there is a set of observable variables {y0, y1, . . . , yt, . . . , yτ},
where yt is a k × 1 vector. These relationship is represented by:

yt = Cxt + νt

3



where C is a k×n matrix that captures the linear projection of yt over xt. The k× 1 vector
νt is conformed by stochastic variables that model the movements of yt not explained by Cxt.
νt is commonly known in these context as the vector of measurement errors as each element
yt is intended to �measure� some linear combination of xt, and vt stands as the deviation of yt
from that linear combination. The nature of the measurement errors vt is determined by the
following covariance matrices and expected value:

E{νtν′s} =

{
R for t = s

0 for t 6= s

E{νt} = 0

Furthermore, in this general setup I assume that the structural shocks and the measurement
errors are orthogonal at any point in time,

E{εtν′s} = 0 for all t, s (3)

Following a time-domain approach the state-space representation of the model is:

xt+1 = Txt + εt (4)

yt = Cxt + νt

Where the �rst equation in (4) is the transition equation and the later corresponds to the
measurement equation. This speci�cation resembles to the �classical model of measurements
initially collected by an agency� presented in Sargent (1989). Following Sargent (1989) the
�ltered variables can be obtained recursively by:

x̂t = E(xt|yt, yt−1, . . . y0, x̂0) (5)

= T x̂t−1 +Kut

where K is the gain matrix of the Kalman �lter and ut is the one-step ahead forecast error, or
more formally

ut = yt − E {yt|yt−1, yt−2, . . .} (6)

and I de�ne

S = E
{

(x̂t − xt) (x̂t − xt)′
}

V = E {utu′t}

then the Gaussian log-likelihood function for the sample {y0, y1, . . . , yt, . . . , yτ}, conditioned on
x̂0 is

L = −τ ln(2π)− 0.5 ln |V | − 0.5

τ−1∑
t=0

u′tV ut
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3 A Professional Forecaster With a Di�erent Information

Set

The information set of the PF and the econometrician might be di�erent, one possible explana-
tion for this is private information either of the PF or the econometrician. I'm interested, from
the standpoint of the econometrician, to learn about the private information that may have the
PF. In terms of the model, which shocks can identify the PF so the econometrician can use
his forecasts as an information variable for estimation and forecasting. Also, the purpose is to
explain the PF di�erences with an ideal complete information forecaster in terms of the shocks
of the model that are poorly identi�ed by the PF6.

3.1 The Professional Forecaster

There is a PF who performs optimal forecasts7 using the economic model mentioned and a data
set (yf0 , y

f
1 , . . . , y

f
t , . . . , y

f
τ ) where yft is a k × 1 vector of data related to the model variables by

yft = Cfxt + νft

E

{
νft

(
νft

)′}
= R

E
{
νft

}
= 0

Then from (5) the optimal �ltering of the PF is:

x̂ft = E(xt|yft , y
f
t−1, . . . y

f
0 , x̂0) (7)

= T x̂ft−1 +Kfuft

Sf = E

{(
x̂ft − xt

)(
x̂ft − xt

)′}
where Kf is the gain matrix of the PF. The one step ahead forecast is then

x̂ft+1|t = E(xt+1|yft , y
f
t−1, . . . y

f
0 , x̂0)

= E(Txt + εt|yft , y
f
t−1, . . . y

f
0 , x̂0)

= T E(xt|yft , y
f
t−1, . . . y

f
0 , x̂0) + E(εt|yft , y

f
t−1, . . . y

f
0 , x̂0) (8)

= T x̂ft

6Another possible reason that might generate di�erent information sets between the PF and the econometri-
cian is rational inattention. In the case of the PF, he might neglect part of the information that the econometrician
have (or vice versa) not because is private but because it is costly to obtain or process it and the gains of including
this information are not big enough. In this case the shocks poorly identi�ed by the PF are possibly shocks less
important to quantify for the PF. Mackowiak and Wiederholt (2009) shows how the �rms might optimally decide
not to identify an aggregate shock if the idiosyncratic shocks are more volatile.

7In the sense that minimizes the expected value of the squared forecast error.
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where E(εt|yft , y
f
t−1, . . . y

f
0 , x̂0) = 0 follows from (2) and (3).

The PF publishes the one-step ahead forecast of some variables each period. De�ne ỹt as
the subset of x̂ft+1|t that is observable for the econometrician and published at time t, then

ỹt = Is x̂ft+1|t (9)

where Is is a selection matrix conformed by the rows of the identity matrix that correspond to
a observable variable i.e the row j of the identity matrix is one of the rows of Is if the entry j
of x̂ft+1|t is published. Then, from (8) and (9), ỹt can be written in terms of the �ltered values
of the PF as

ỹt = IsT x̂
f
t (10)

3.2 Incorporating the forecasts from the PF

Suppose initially (for ease of exposition) that the econometrician only observes {ỹ0, ỹ1, . . . , ỹt, . . . , ỹτ}.
From (10) and (7) follows a state-space representation with ỹt as the observable and x̂

f
t as the

unobservable states. The transition and measurement equation of the representation are

x̂ft+1 = T x̂ft +Kfuft+1

ỹt = IsT x̂
f
t (11)

The system (11) is in terms of the innovations uft , and the unobservable states x̂ft that are
the �ltered values of the PF. On the other hand, using the law of motion of the variables in
the model by (1), another possible state-space representation with the data ỹt as the observable
and rede�ning the unobservable states as xt can be written as follows

xt+1 = Txt + εt

ỹt = IsTxt + vt (12)

Now a measurement error vt = IsT
(
x̂ft − xt

)
emerge. To understand the nature of this

measurement error note that if the PF has complete information8 then

x̂ft = E {xt|xt} = xt

and vt = 0. So in this case the measurement error associated with the forecast of the PF re�ects
the di�erence between the forecast of the PF IsT x̂

f
t and the forecast of a complete information

forecaster IsTxt, this can be stated as

vt = E
{
xt+1|yft , y

f
t−1, . . . y

f
0 , x̂0

}
− E {xt+1|xt}

thus vt contains the signal extraction uncertainty of the PF.

8In the sense that knows perfectly the current state of the economy xt but is uncertain about the shocks that
can arrive (εt, εt+1, εt+2, ...).
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De�ning et = εt−1 the contemporaneous form of the state-space representation is

xt = Txt−1 + et

ỹt = IsTxt + vt

In this case et and vt are correlated, the covariance matrix is:

Θ = E {vte′t}
Θ = IsT

(
KfC − I

)
Q (13)

and the variance matrix of the measurement error is:

R = E {vtv′t} = IsTS
f (IsT )′

vt is not the standard measurement error because it is autocorrelated. Formally,

E{vtv′t−j} = E

{
IsT

(
x̂ft − xt

)(
x̂ft−j − xt−j

)′
(IsT )′

}
= (IsT )

(
j∏
i=1

(
I −KfIsT

)
T

)
Sf (IsT )′ (14)

The next proposition clari�es the nature of vt. It resumes in a compact form the information
presented in (13) and (14) and the relationship of vt with ν

f
t .

Proposition 1. The stochastic process {vt}t=1,...,∞ can be written as a vector autoregresive
(VAR) process of the form:

vt = Φvt−1 + Γet + Ωνft

where the matrices Φ, Γ and Ω correspond to:

Φ = IsT
((
I −KfIs

)
T
)

((IsT )′IsT )
−1

(IsT )′

Γ = IsT
(
KfC − I

)
= ΘQ−1

Ω = IsTK
f (15)

Proof. The measurement error vt in equation (12) correspond to:

vt = IsT
(
x̂ft − xt

)
replacing x̂ft using (11) and xt using (12):

vt = IsT
(
T x̂ft−1 +Kfuft

)
− IsT (Txt−1 + et)

= IsTT
(
x̂ft−1 − xt−1

)
+ IsTK

fuft − IsTet
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replacing the one-step ahead forecast error uft by it´s de�nition (see (6))

vt = IsTT
(
x̂ft−1 − xt−1

)
+ IsTK

f
(
yft − CfT x̂

f
t−1

)
− IsTet

= IsTT
(
x̂ft−1 − xt−1

)
+ IsTK

f
(
Cfxt + νft − CfT x̂

f
t−1

)
− IsTet

using (12) to solve out for xtand arranging terms

vt = IsTT
(
x̂ft−1 − xt−1

)
+ IsTK

f
(
Cf (Txt−1 + et) + νft − CfT x̂

f
t−1

)
− IsTet

= IsT (I −KfCf )T
(
x̂ft−1 − xt−1

)
+ IsTK

fνft + IsT (KfCf − I)et

using the de�nition of vt,

vt = IsT (I −KfCf )T
(
(IsT )

′
IsT

)−1
(IsT )

′
IsT

(
x̂ft−1 − xt−1

)
+ IsTK

fνft + IsT (KfCf − I)et

= IsT (I −KfCf )T
(
(IsT )

′
IsT

)−1
(IsT )

′
vt−1 + IsTK

fνft + IsT (KfCf − I)et

The matrices in (15) fully characterize the deviations of the PF from the ideal forecaster;
their entries are reduced form parameters that are functions of the parameters of the model and
the PF parameters (speci�cally the PF gain matrix). The matrix Γ measures the e�ect that has
each structural shock in vt , as vt arises because of the lack of information of the PF, the entries
in Γ re�ect the uncertainty of the PF over the corresponding shock, weighted by the importance
of it on the variable to forecast. On the other hand, Φ measures how the deviations vt a�ect
vt+1, or in other terms, it captures the persistence structure of the deviations of the PF from
the ideal forecaster. (15) show that the persistence depends on the structure of the economy T
and the learning process of the PF Kf . If the economy has low persistence and the PF learns
fast, the persistence of vt will tend to zero. Finally Ω captures how the measurement error of
the data used by the PF is translated to vt9.

Proposition 1 can explain the �ve characteristics of the PF that Andrade and Le Bihan
(2010) found in the European Central Bank survey: �[PF ...] (i) have predictable forecast errors;
(ii) disagree; (iii) fail to systematically update their forecasts in the wake of new information;
(iv) disagree even when updating; and (v) di�er in their frequency of updating and forecast
performances� (Andrade and Le Bihan (2010)).

The �rst characteristic follows from the autoregresive component of vt10. Second, If the PF
di�er in the information sets, ii, iv and v are explained because the matrices in 15 are di�erent, it
implies they �disagree� (x̂ft is di�erent for each of them) and are di�erent �updating� or learning
(Φ and Γ di�er between forecasters). Finally, iii is explained by the correlation of vt and et, if
the �new� information is about the shocks that the PF poorly identi�es it will not be completely
incorporated in the forecasts.

9For practical purposes, as is generally not known which data used the PF and consequently the size and

elements of νft are not known, 15 can be writen in terms of the reduced form vector ψt = Ωνft ; which covariance
matrix would re�ect the data uncertainty of each of the forecasts. Therefore, vt can be written as vt = Φvt−1 +
Γet + ψt.

10vt is not the actual forecast error, although is a component of it. The shocks that arrive to the economy in
the forecast horizon conform the other component; by the de�nition of the shocks, not predictable.
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An Extended Data Base

Now I will extend the initial formulation to allow for a more general set of information for the
econometrician. Collecting our results

xt = Txt−1 + et

vt = Φvt−1 + Γet + Ωνft

ỹt = IsTxt + vt

yt is the data released at time t which is composed by:

yt =

(
dt
ỹt

)
(16)

where dt is data related to the variables of the model and ỹt is the vector of the one-step ahead
forecasts of the PF. Now the measurement equation is

yt =

(
N
IsT

)
xt +

(
µt
vt

)
where N is a matrix that captures the relation between the variables in the model and the data
contained in dt. µt is a vector of the measurement errors associated with dt. Then, a complete
formulation of the state space representation is

xt = Txt−1 + et

vt = Φvt−1 + Γet + Ωνft

yt =

(
N

T(i∈B)

)
xt +

(
µt
vt

)
E {ete′t} = Q E {et} = 0

E {µtµ′t} = H E {µt} = 0

E

{
νft

(
νft

)′}
= R E

{
νft

}
= 0

E {µte′s} = 0 for all t, s (17)

E
{
νft e
′
s

}
= 0 for all t, s

3.3 The Log-Likelihood function neglecting Φ

The more recent innovations might be the main drivers of the measurement errors of the PF
forecasts (i.e the discrepancy between the PF and the ideal complete information forecaster). If
this is the case vt will be mainly explained by Γet and the term Φvt−1 could be neglected, then
the state space representation can be restated as

9



xt = Txt−1 +
(
0 0 I

) µt
νft
et


yt =

(
N
IsT

)
xt +

(
I 0 0
0 Ω Γ

) µt
νft
et


E


 µt

νft
et

( µ′t

(
νft

)′
e′t

) =

 H 0 0
0 R 0
0 0 Q

 =

 h h′ 0 0
0 r r′ 0
0 0 q q'


E


 µt

νft
et

 = 0

where h, r and q are obtained from the Cholesky decomposition of H, R and Q respectively. In
this speci�cation is evident the correlation between the measurement errors and the structural
shocks. Furthermore, the state space representation in terms of the orthogonal shocks (ζt) is

xt = Txt−1 +
(
0 r q

)
ζt

yt =

(
N
IsT

)
xt +

(
h 0 0
0 Ωr Γq

)
ζt

E {ζtζ ′t} = I Eζt = 0

or in a compact form

xt = Txt−1 + Hζt

yt = Zxt + Gζt

E {ζtζ ′t} = I Eζt = 0

This particular state-space form and the respective Kalman �lter and smoother recursions
can be found in Koopman and Harvey (2003). From there the �ltered variables can be obtained
by:

x̂t = E(xt|yt, yt−1, . . . y0, x̂0)

= T x̂t +Kat+1

E
{

(x̂t − xt) (x̂t − xt)′
}

= S

where K is the gain matrix of the Kalman �lter and at is the one-step ahead forecast error, or
more formally

K =
(
TS(ZT)

′
+ H(G + ZH)

′)
V−1

at = yt − E {yt|yt−1, yt−2, . . .}
E {ata′t} = V =

(
ZTS(ZT)

′
+ (G + ZH)(G + ZH)

′)
10



Then the Gaussian log-likelihood function for the sample {y0, y1, . . . , yt, . . . , yτ}, conditioned
on x̂0 is

L = −τ ln(2π)− 0.5 ln |V| − 0.5

T−1∑
t=0

a′tVat

With the log-likelihood function the reduced form parameters contained in Γ and Ω (and
the deep parameters too) can be estimated by maximum likelihood or with Bayesian techniques
considering the possible characteristics of the gain matrix of the PF to construct the priors. The
reduced form approach is very useful in this scenario for the parameters in Γ and Ω because
typically Kf is not observable although there might have some prior knowledge about it.

3.4 The Log-Likelihood function, general form

To obtain the Likelihood function of (17) allowing the matrix Φ to be di�erent from a null
matrix I restate the state space representation (17) as follows

(
xt
vt

)
= st =

(
T 0
0 Φ

)
st−1 +

(
I 0
Γ Ω

)(
et
νft

)
yt =

(
N 0
IsT I

)
st +

(
I
0

)
µt

E

{(
et
νft

)(
e′t

(
νft

)′ )}
=

(
Q 0
0 R

)
E

{(
et
νft

)}
= 0

E {µtµ′t} = H E {µt} = 0

E
{
µt

(
e′s

(
νft

)′ )}
= 0 ∀t, s (18)

or in a compact form

st = Tst−1 + Lωt

yt = Zst + Bµt

E {ωtω′t} =

(
Q 0
0 R

)
E {ωt} = 0

E {µtµ′t} = H E {µt} = 0

E {µtes} = 0 for all t, s (19)

with this speci�cation the �ltered variables can be obtained by:

ŝt = E(st|yt, yt−1, . . . y0, x̂0)

= T ŝt +Kat+1

S = E
{

(ŝt − st) (ŝt − st)′
}
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where K is the gain matrix of the Kalman �lter and at is the one-step ahead forecast error, or
more formally

at = yt − E {yt|yt−1, yt−2, . . .}
V = E {ata′t}

Then the Gaussian log-likelihood function for the sample {y0, y1, . . . , yt, . . . , yτ}, conditioned
on ŝ0 is

L = −τ ln(2π)− 0.5 ln |V| − 0.5

T−1∑
t=0

a′tVat

With the log-likelihood function the reduced form parameters contained in Γ and Φ can be
estimated by maximum likelihood or with Bayesian techniques. Again, the explicit form of Γ,
Ω and Φ is an important feature for setting the priors for the estimation. Incorporating Φ allow
us to think about the speed of learning of the PF.

4 A PF with a di�erent forecasting model

Until this point the PF constructs his optimal forecasts using the same economic model as the
econometrician, perhaps a strong assumption. This section extends the derivation for the case
in which the forecast function can be approximated by a linear function of the data considered
by the PF:

xft+1|t = F yft

where F is a matrix that contains the set of weights that the PF assigns to each piece of
data contained on yft . This speci�cation does not necessarily impose the restriction that the PF
only considers the latest released data because yft might include lags of some variables. This
data is related to the variables of the model by11:

yft = Cfxt + νft

where νt is the vector of measurement errors. Then

xft+1|t = F Cfxt + Fνft

4.1 Incorporating the forecasts from the PF

Starting with the case where the only observable variables are the one-step ahead forecasts of
some variables,

ỹt = xft+1|t

= F Cfxt + Fνft (20)

11Again, here I could extend vector xt to include lags of some relevant model variables in case some of the
data is lagged.
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with E

{
νft

(
νft

)′}
= H̄. (20) can be written in terms of the expectations of the agents in the

model in the form:

ỹt = IsTxt +mt + vft

mt = (F Cf − IsT )xt

vft = Fνft

H̄ = E

{
vft

(
vft

)′}
= FH̄F ′

mt+vft can be interpreted as a model mismatch error. The model mismatch error characterizes
the di�erence between the forecast from the PF and the complete information forecast at time
t, it can be written as:

mt + νft = Isx
f
t+1|t − E {Isxt+1|xt, xt−1, ...}

The model mismatch term emerges in two cases i) if the forecaster has a di�erent model
of the economy or ii) If the forecaster has no complete information. The latter case has been
covered in the third section, this section extends the formulation to incorporate also the �rst
case. The shortcoming of the approach is that our results rely on terms such as F which are
not �structural� strictly speaking. Nevertheless, it allows us to show that the reduced form
parameters obtained in the previous section also emerge in this more general setup.

Analogous to Proposition 1 the stochastic process {mt}t=1,...,∞ can be represented in the
form

mt = Φ̄mt−1 + Γ̄et

Φ̄ = (F C − IsT )T
[
(F C − IsT )

′
(F C − IsT )

]−1
(F C − IsT )

′

Γ̄ = (F C − IsT ) (21)

(21) shows that the magnitude and sign of the model mismatch term depends on the type of
shocks present in the economy. The PF, depending on the shocks, might have his forecast near
or far from the optimal complete information forecast.

Collecting our results the state-space representation of the model is:

xt = Txt−1 + et

mt = Φ̄mt−1 + Γ̄et

ỹt = IsTxt +mt + vt

E {ete′t} = Q E {et} = 0

E {vtv′t} = H E {vt} = 0

and with a more general vector of observable variables yt de�ned in (16)
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xt = Txt−1 + et

mt = Φ̄mt−1 + Γ̄et

yt =

(
N
IsT

)
xt +

(
0
I

)
mt +

(
µt
vt

)
E {ete′t} = Q E {et} = 0

E {vtv′t} = H̄ E {vt} = 0

E {µtµ′t} = H E {µt} = 0 (22)

Obtaining the likelihood function of (22) is analogous to the steps shown for (17). Again,
the Likelihood function depends on the reduced form parameters contained in Φ̄ and Γ̄. So
basically, to incorporate an outsider forecasts as observables for signal extraction, there should
be speci�ed a measurement error that is the sum of a standard measurement error term vt and
an autocorrelated and correlated with the structural shocks term mt.

5 Conclusions

In �Rational Expectations Econometrics� the forecasts of professional forecasters can be used
as sources of information for model estimation and to characterize the professional forecaster
underlying signal extraction mechanism. The main feature that must be incorporated is the
correlation of the measurement errors and the shocks of the model. Our proposal for the
stochastic process of the measurement errors is a VAR(1); where the innovations are the shocks
of the model. The VAR(1) characterize the PF coherently with the evidence found in the
literature and provide a benchmark for the evaluation of the forecasters: a complete information
forecaster.

The reduced form of the VAR allow to obtain the Log-Likelihood function of the DSGE model
incorporating the PF forecasts as observables and also the reduced form parameters characterize
the shocks of the economy that the professional forecasters miss (or don't learn about them).
The explicit dependence shown of the reduced form parameters of the gain matrix of the PF
and the structure of the economy is relevant information to construct priors for this parameters.
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