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Abstract 

Financial basics and intuition stresses the importance of investment horizon for risk 
management and asset allocation. However, the beta parameter of the Capital Asset 
Pricing Model (CAPM) is invariant to the holding period. Such contradiction is due to the 
assumption of long-term independence of financial returns; an assumption that has been 
proven erroneous.    

Following concerns regarding the impact of the long-term dependence assumption on risk 
(Holton, 1992), this paper quantifies and fixes the CAPM’s bias resulting from this abiding 
–but flawed- assumption. The proposed procedure is based on Greene and Fielitz (1980) 
seminal work on the application of fractional Brownian motion to CAPM, and on a revised 
technique for estimating time-series’ fractal dimension with the Hurst exponent (León and 
Vivas, 2010; León and Reveiz, 2011a).  

Using a set of 85 stocks from the S&P100, this paper finds that relaxing the long-term 
independence assumption results in significantly different estimations of beta. According to 
three tests herein implemented with a 99% confidence level, more than 60% of the stocks 
exhibit significantly different beta parameters. Hence, expected returns are biased; on 
average, the bias is about േ60bps for a contemporary one-year investment horizon.        

Thus, as emphasized by Holton (1992), risk is a two-dimensional quantity, with holding 
period almost as important as asset class. The procedure herein proposed is valuable 
since it parsimoniously achieves an investment horizon dependent CAPM.  

Key words: CAPM, Hurst exponent, long-term dependence, fractional Brownian motion, 
asset allocation, investment horizon.  
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1. Introduction 

The Capital Asset Pricing Model (CAPM) is one of the milestones of modern financial 
theory, and was the first model introducing a specific-asset risk concept in a general 
equilibrium model for asset pricing (Litterman, 2003). This model has endured for decades, 
and is not only a basic topic in traditional corporate finance courses, but continues as 
market practitioners’ standard for several purposes.4   

Academics and practitioners are aware of the most evident and well-known shortcomings 
related to the model’s assumptions, such as the presence of non-normal returns, 
transaction costs, non-homogeneous market expectations, among others. However, one of 
the assumptions overlooked by academics and practitioners alike is that CAPM was 
created under the strong assumption of long-term independence of financial returns. This 
assumption results in the temporal consistency of volatility5, and allows CAPM formulae 
not to consider the investment horizon (i.e. investor’s holding period) as a relevant input 
when estimating expected returns; this is why, despite being highly counter-intuitive, an 
asset manager or a financial officer using CAPM is never concerned about what his 
client’s or his own investment horizon is.     

Because volatility may not be consistent over time, several authors (Holton, 1992; Peters, 
1989; León and Reveiz, 2011a) have highlighted the perils resulting from overlooking the 
relevance of the investment horizon in the absence of time series’ long-term 
independence, especially for asset pricing, asset allocation and risk management. Such 
variability of risk along the investment horizon contradicts traditional indifference with 
respect to investor’s holding period, and urges for a methodological adjustment that 
introduces the investment horizon as a significant input for CAPM.  

Holton (1992), León and Vivas (2010) and León and Reveiz (2011a) show that the main 
empirical consequence of long-term dependence is that it invalidates the main 
assumptions of Brownian motion, with major theoretical and empirical implications. For 
financial theory, according to Peters (1989) and Lo (1991), the existence of long-term 
memory rejects the Efficient Market Hypothesis (EMH); for financial practice, the square-
root-of-time-rule to scale volatility to different maturities turns invalid. In both cases, 
outcomes in standard portfolio optimization and risk management models can change 
when financial time-series’ long-term memory is considered.  

                                                            
4 For instance, Mandelbrot and Hudson (2004) report that a 1999 survey conducted by two students from Duke 
University to 392 CFO listed in the U.S Fortune 500 yielded that 73.5% of the surveyed estimated capital cost 
using standard CAPM; in Europe, this percentage was 77% in 2001. 
5 As pointed out by Holton (1992), based on random walk theory, investment professionals assume temporal 
consistency of volatility, where, for instance, daily volatilities contain precisely the same information as five-
year volatilities.  
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Early evidence of long-term dependence or memory in financial time series was reported 
by Mandelbrot (1972); he designed the Hurst exponent, a parameter that assesses the 
degree of long-term dependence. 6  Afterwards, other authors confirmed Mandelbrot’s 
findings for developed markets (Peters, 1989 and 1992; León and Reveiz, 2011a; 
Ambrose et al., 1993; Bilel and Nadhem, 2009) and for emerging markets (León and 
Vivas, 2010; Cajueiro and Tabak, 2008; Leiton, 2011). Consequently, temporal 
consistency of volatility assumption and investment horizon neutrality should not be taken 
for granted. 

Hence, taking into account extensive evidence of the presence of long-term dependence 
and the relevance of CAPM for financial industry, this paper combines seminal work on the 
application of long-term memory processes to CAPM (Greene and Fielitz, 1979 and 1980), 
and a revised technique for estimating the Hurst exponent (León and Vivas, 2010; León 
and Reveiz 2011a), in order to propose a parsimonious method for adjusting traditional 
CAPM model for long-term dependence. The main outcomes of this method are 
investment-horizon-adjusted estimations of systemic risk and expected returns, along with 
the assessment of the bias resulting from the long-term independence assumption. 

Using a set of 85 stocks from the S&P100, this paper finds that relaxing the long-term 
independence assumption results in significantly different estimations of beta. According to 
three significance tests herein implemented with a 99% confidence level, more than 60% 
of the stocks exhibit significantly different beta parameters. Hence, expected returns are 
biased; on average, the bias is about ±60bps for a contemporary one-year investment 
horizon.        

Thus, as emphasized by Holton (1992), risk is a two-dimensional quantity, with holding 
period almost as important as asset class. The procedure herein proposed is valuable 
since it parsimoniously achieves an investment horizon dependent CAPM, which is 
particularly relevant for long-term investors and asset managers because it allows for 
designing allocations and making decisions that correspond to holding periods.    

This paper consists of five sections; this introduction is the first one. The second section 
describes and develops classic rescaled range analysis (R/S) methodology for detecting 
and assessing the presence of long-term serial dependence of returns, along with the 
adjusted version proposed by León and Vivas (2010) and León and Reveiz (2011a). The 
third section describes and develops the adjustment proposed by Greene and Fielitz (1979 
and 1980) for incorporating long-term dependence to the CAPM model. The fourth 
presents numerical evidence of the bias resulting from overlooking long-term dependence 
of financial time series. Finally, the last section highlights and discusses some relevant 
remarks.     

                                                            
6  However, the Hurst exponent is not the only technique available to verify the existence of long-term 
dependence. As acknowledged by Malavergne and Sornette (2006), slow convergence in distribution of 
financial time-series to a Gaussian law –even for low frequency returns- may be a sign of significant time-
dependencies between asset returns. 
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2. Assessing long-term dependence in financial time series7 

Long-term dependence detection and assessment for time-series began with Hydrology 
(Mandelbrot and Wallis, 1969a), when the British physicist H.E. Hurst (1880–1978) was 
appointed to design a water reservoir on the Nile River. The first problem Hurst had to deal 
with was to determine the optimal storage capacity of the reservoir; that is, restricted to a 
budgetary constraint, design a dam high enough to allow for fluctuations in the water 
supply whilst maintaining a constant flow of water below the dam.  

Deciding on the optimal storage capacity depended on the inflows of the river, which were 
customarily assumed to be random and independent by hydraulic engineers at that time. 
However, when checking the Nile’s historical records (622 B.C. - 1469 B.C.) Hurst 
discovered that flows couldn’t be described as random and independent: data exhibited 
persistence, where years of high (low) discharges were followed by years of high 
discharges (low), thus describing cycles but without an obvious periodicity.  

Hurst concluded that (i) evidence contradicted the long-established independence 
assumption and (ii) that the absence of significant autocorrelation proved standard 
econometrics tests to be ineffective (Peters, 1994). Thus, since absence of independence 
vindicated caring about the size and sequence of flows, Hurst developed a methodology 
capable of capturing and assessing the type of dependence he had documented.  

Hurst’s methodological development was based on Einstein’s (1905) work about particles’ 
movement, which Scottish botanist Robert Brown (1828 and 1829) already depicted as 
inexplicable, irregular and independent. Einstein originally formulated that the distance or 
average displacement (R) covered by a particle suspended in a fluid per unit of time (n) 
followed ܴ ൌ ݊଴.ହ; this is analogous to financial industry’s standard square-root-of-time rule 
for escalating volatility.8  

Unlike Brown and Einstein, Hurst’s primary objective was a broad formulae, capable of 
describing the distance covered by any random variable with respect to time. Hurst found 
his observations of several time-series were well represented by ܴ~ܿ ൈ ݊ு , where H 
corresponds to the way that distance (R) behaves with respect to time. 

Hurst defined that the metric for the distance covered per unit of time or sample (n) would 
be given by the range Rn [F1], where x1,x2,x3…xn  correspond to the change of the random 
variable within the sample, and ݔҧ௡  is the average of these changes. Range Rn is 

                                                            
7 This section is extracted from León and Reveiz (2011a).    
8 The square-root-of-time-rule consists of multiplying the standard deviation calculated from high-frequency 
time-series (e.g. daily) by the square-root of n, where n is the number of units which compose the low-
frequency time-series (e.g. yearly). According to Sornette (2003), this is equivalent to saying that the typical 
amplitude of returns is proportional to the square-root-of-the-time scale, which he describes as the most 
important prediction of the Brownian motion model. 
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standardized by the standard deviation of the sample for that period (Sn), which results in 
the rescaled range for the n sample (R/S)n [F1].   

ሺܴ ܵ⁄ ሻ௡ ൌ ܴ௡
ܵ௡

ൗ ൌ
ቂ max

ଵஸ௞ஸ௡
൫∑ ൫ݔ௝ െ ҧ௡൯௞ݔ

௝ୀଵ ൯ െ min
ଵஸ௞ஸ௡

൫∑ ൫ݔ௝ െ ҧ௡൯௞ݔ
௝ୀଵ ൯ቃ

ܵ௡
 [F1] 

Hurst found out that the behavior of this rescaled range [F1] adequately fitted the dynamic 
of numerous time-series from natural phenomena, where the fit could be represented as 
follows [F2]: 

ሺܴ ܵ⁄ ሻ௡~ܿ ൈ ݊ு [F2] 

Paraphrasing Peters (1992), Hurst’s novel methodology measures the cumulative 
deviation from the mean for various periods of time and examines how the range of this 
deviation scales over time. ܪ෡, the estimated exponent that measures the way distance (R) 
behaves with respect to time, takes values within the 0 and 1 interval (0 < ܪ෡ ≤ 1), where 
 .෡=0.5 corresponds to Einstein’s and Brown’s independency caseܪ

Mandelbrot and Wallis (1969a and 1969b) proposed to plot Hurst’s function [F2] for 
several sample sizes (n) in a double logarithmic scale, which served to obtain ܪ෡ through a 
least squares regression. ܪ෡  would be the slope of the estimated equation [F3]; this 
procedure is known as the rescaled range analysis (R/S).9 

ሺܴ݃݋ܮ ܵ⁄ ሻ௡ ൌ ሺܿሻ݃݋ܮ ൅ ሺ݊ሻ݃݋ܮܪ  [F3] 

According to Mandelbrot (1965) the application of R/S to random series with stationary and 
independent increases, such as those characterized by Brown (1828 and 1829) and 
Einstein (1905), results in ܪ෡=0.5, even if the distribution of the stochastic process isn’t 
Gaussian, in which case ܪ෡ asymptotically converges to 0.5 (ܪ෡ ≈ 0.5).  

As stated by Sun et al. (2007), in the ܪ෡=0.5 and ܪ෡ ≈ 0.5 cases the process has no memory 
(i.e. is independent), hence next period’s expected result has the same probability of being 
lower or higher than the current result. Applied to financial time-series this is akin to 
assuming that the process followed by assets’ returns is similar to coin tossing, where the 
probability of heads (rise in the price) or tails (fall in the price) is the same (½), and is 
independent of every other toss; this is precisely the theoretical base of the CAPM, the 
Arbitrage Pricing Theory (APT), the Black & Scholes model and the Modern Portfolio 
Theory (MPT). 

When ܪ෡ takes values between 0.5 and 1 (0.5 < ܪ෡ ≤ 1) evidence suggests a persistent 
behavior, therefore one should expect the result in the next period to be similar to the 
current one (Sun et al., 2007). According to Menkens (2007) this means that increments 
are positively correlated: if an increment is positive, succeeding increments are most likely 
                                                            
9 León and Reveiz (2011a) include a step-by-step explanation on how to implement the R/S algorithm.  
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to be positive than negative. In other words, each event has influence on future events; 
therefore there is dependence or memory in the process.  

As ܪ෡ becomes closer to one (1) the range of possible future values of the variable will be 
wider than the range of purely random variables. Peters (1996) argues that the presence 
of persistency is a signal that today’s behavior doesn’t influence the near future only, but 
the distant future as well. 

On the other hand, when ܪ෡ takes values below 0.5 (0 ≤ ܪ෡ < 0.5) there is a signal that 
suggests an antipersistent behavior of the variable. This means, as suggested by Sun et 
al. (2007), that a positive (negative) return is more likely followed by negative (positive) 
ones; hence, as stated by Mandelbrot and Wallis (1969a), this behavior causes the values 
of the variable to tend to compensate with each other, avoiding time-series’ overshooting. 
Applied to financial markets series, Menkens (2007) affirms that this kind of continuously 
compensating behavior would suggest a constant over-correction of the market, one that 
would drive it to a permanent adjustment process. Similarly, Peters (1996) links this 
behavior to the well-known “mean-reversion” process. 

Hurst’s methodology and results 10  were gathered, corrected and reinterpreted by 
Mandelbrot (1972) and Mandelbrot and Wallis (1969a and 1969b). Based on random 
simulation models they verified that (i) Hurst’s conclusions were correct, but calculations 
were imprecise; (ii) their corrected version of R/S is robust to detect and measure 
dependence, even in presence of significant excess skewness or kurtosis11; (iii) their 
corrected version of R/S is asymptotically robust to short-term dependency (e.g. 
autoregressive and moving average processes); (iv) asymptotically ܪ෡=0.5 for independent 
processes, even in absence of Gaussian processes; and (v) in contrast to other 
methodologies, R/S can detect non periodic cycles. 

Some explanations for financial assets’ return persistence are found in human behavior, 
since the latter contradicts rationality assumption in several ways, for example: (i) 
investors’ choices are not independent, and they are characterized by non-linear and 
imitative behavior (LeBaron and Yamamoto, 2007; Sornette, 2003); (ii) investors resist 
changing their perception until a new credible trend is established (Singh and Dey, 2002; 
Peters, 1996), and (iii) investors don’t react to new information in a continuous manner, but 
rather in a discrete and cumulative way (Singh and Dey, 2002).  

Other explanations for financial assets’ return persistence have to do with the importance 
of economic fundamentals (Nawrocki, 1995; Lo, 1991; Peters, 1989), and the use of 

                                                            
10 Hurst (1956) studied 76 natural phenomena. ܪ෡ was significantly different from 0.5, and was close to 0.73 (σ 
= 0.092). Hurst found no evidence of significant autocorrelation in the first lags, which led him to reject short-
term dependence as the source of this phenomenon; neither could he find a slow and gradual decay with 
increasing lags, which supported his rejection of long-term dependence in the traditional sense of Campbell et 
al. (1997). 
11 Mandelbrot and Wallis (1969a) were the first to recognize R/S as non-parametric, even in presence of 
extreme skewness or infinite variance. León and Vivas (2010), Martin et al. (2003), Willinger et al. (1999) and 
Peters (1996 and 1994) verified such statement.  
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privileged information (Menkens, 2007). Alternatively, some authors (Bouchaud et al., 
2008; Lillo and Farmer, 2004), based on the persistence of the number and volume of 
buying and selling orders in transactional systems, conclude that markets’ liquidity make 
instantaneous trading impossible, leading to transactions’ splitting, and decisions’ 
clustering, resulting in market prices which don’t fully reflect information immediately, but 
incrementally.  

Concerning significance tests for ܪ෡, two well-documented issues have to be taken into 
account (León and Vivas, 2010; Ellis, 2007; Couillard and Davison, 2005; Peters, 1994). 
First, there is a positive bias in the estimation of H resulting from finite time-series and 
minimum size of periods below approximately 1.000 observations. Second, ܪ෡ for normal 
and non-normal distributed random variables distribute like a normal.       

Regarding the first issue, the estimation bias resulting in the overestimation of ܪ෡ can be 
conveniently assessed. Several assessment methods for estimating such bias have been 
documented, but this paper focuses on the single most well-known. First proposed by Anis 
and Lloyd (1976), subsequently revised by Peters (1994), and verified and applied by León 
and Vivas (2010), León and Reveiz (2011a), Leiton (2011), Ellis (2007) and Couillard and 
Davison (2005), the chosen method consists of a functional approximation for estimating 
the expected value of (R/S)n when the random variable is independent and of finite length. 
This method yields the expected Hurst exponent corresponding to an independent random 
variable, which will be noted as ሶܪ  , and is based on the following calculation of the 
expected value of (R/S)n:  

ሺܴܧ ܵ⁄ ሻ௡ ൌ
݊ െ భ

మ

݊
1

ඥ݊ߨ 2⁄
෍ ඨ݊ െ ݅

݅

௡ିଵ

௜ୀଵ

 
[F4]

Any divergence of ܪ෡ from ܪሶ  would signal the presence of long-term memory in time-series. 
However, as customary in statistical inference, it is critical to develop appropriate statistical 
tests to distinguish between significant and non-significant deviations from long-term 
independence null hypothesis.  

The significance herein used test follows León and Vivas (2010) and León and Reveiz 
(2011a), and is similar to that proposed by Ellis (2007) and Couillard and Davison (2005). 
Because ܪ෡’s distribution is established to be normal, even for random variables that are 
not, a conventional t-statistic test may be implemented. Let ܪ෡ be the R/S’s estimated value 
of the Hurst exponent, ̂ߤሺܪሶ ሻ and ߪොሺܪሶ ሻ the expected value and standard deviation of the 
expected Hurst exponent corresponding to an independent random variable (ܪሶ ), the 
significance test would be as follows:12 

                                                            
12 Let N be the length of time-series, due to ܪ෡ distributing like a normal the ordinary choice for ߪොሺܪሶ ሻ is ൎ
1 ܰଵ ଶ⁄⁄  as in Peters (1994). According to Couillard and Davison (2005) this choice corresponds to infinite 
length time-series, and yields easy and frequent rejections of the independence null hypothesis. They 
propose ൎ 1 ݁ܰଵ ଷ⁄⁄ , which is the authors choice.  
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ݐ ൌ
෡ܪ െ ሶܪሺߤ̂ ሻ

ሶܪොሺߪ ሻ
 [F5]

As usual, if t is higher than ±1.96 it is possible to reject the null hypothesis of long-term 
independence with a 95% confidence level. The sign of t reveals the type of dependence: 
if it is positive (negative) there is evidence of persistence (antipersistence). 

For convenience, given that ܪሶ  is the estimated Hurst exponent for random, independent 
and finite time-series of length N, the spread between ܪሶ  and 0.5 corresponds to the bias 
estimation resulting from using finite time-series and the choice of the size of periods (n). 
Subtracting such spread from the Hurst exponent estimated using R/S, namely ܪ෡, results 
in an adjusted estimated Hurst exponent, which will be noted as ܪෙ: 

ෙܪ ൌ ෡ܪ െ ൫ܪሶ െ 0.5൯ [F6]

This adjusted estimated Hurst exponent (ܪෙ) is essential since it allows a practical and 
unbiased assessment of long-term dependence. All calculations implemented in the fourth 
section use this adjusted estimated Hurst exponent.13 

 

3. Relaxing CAPM’s long-term independence assumption  

Like other Financial Theory milestones (e.g. Black & Scholes and Modern Portfolio 
Theory), CAPM relies on long-term independence of financial returns. Based on Greene 
and Fielitz (1979 and 1980), this section presents the CAPM’s formulae resulting from 
acknowledging the existence of long-term dependence of financial returns, where the 
Hurst exponent (ܪ) serves as the long-term dependence parameter.  

a. Standard CAPM 

Developed by Treynor, Sharpe, Lintner and Mossin in the 60’s, CAPM has become the 
standard for stocks’ valuation. Furthermore, from the estimated expected return, firm’s 
capital cost can be calculated or portfolio performance can be assessed (Campbell et al., 
1997). In addition, CAPM provides a reference value to assess whether an action is 
undervalued or overvalued from its equilibrium value. 

This model assumes that agents are risk averse and they maximize expected utility (in the 
von Neumann-Morgenstern sense) through investment decisions based on mean-variance 
criteria (Markowitz, 1959). Additionally, the model assumes market efficiency and perfect 
(no arbitrage opportunities), the absence of transaction costs and all investors sharing the 

                                                            
13 For this paper the adjusted estimated Hurst exponent is assumed to be stationary (i.e. returns follow an 
unifractal process). However, as pointed out by Di Mateo (2007), this exponent may vary though time, making 
the return process multifractal. The unifractal assumption is convenient since a reliable estimation of the Hurst 
exponent requires long time series, more than 1,000 daily observations according to authors’ estimations and 
León and Vivas (2010).     
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same information. Deposit and loans rates are assumed to be equal, and it is assumed 
that money market resources are unlimited at the risk free rate. Also, it is assumed that 
there are homogeneous market expectations, which means that all agents have the same 
investment opportunities, and that they regard expected returns and variance in the same 
way. 

Moreover, the model assumes that all investors have the same investment horizon, which 
relies on the existence of neutrality in the investment horizon. In the sense of Campbell et 
al. (1997), this means that it is necessary to assume that assets can be described as a 
random walk, in which returns are independent and identically distributed and jointly 
distributed as a multivariate normal.  

As usual, let ௙ܴ be the risk free rate’s return, ܴ௠ the market’s return, ௝ܴ the risky asset’s 
return, and ܧሺ·ሻ  the expectation operator, CAPM model yields that the equilibrium 
expected return of risky asset j is given by [F7]. 

൫ܧ ௝ܴ൯ ൌ ௙ܴ ൅ ሺܴ௠ሻܧ௝ሾߚ െ ௙ܴሿ [F7]

௝ߚ ൌ
௝,௠ߪ

௠ߪ
ଶ  [F8]

This relationship implies that equilibrium expected return of risky asset (j) is a linear and 
positive function of its risk premium, its covariance with the market (ߪ௝,௠) and the market’s 
variance (ߪ௠

ଶ ). In this sense, ߚ௝ is the portion of total risk that is priced, is the systematic14 
risk of risky asset j, also referred to as the market risk or non-diversifiable risk (Danthine 
and Donaldson, 2005), and is commonly known as the risky asset’s beta. Note that when 
time horizon neutrality is assumed (i.e. under long-term independence of financial returns) 
choosing the holding period is irrelevant15 and, therefore, the investment horizon is not 
specified in the model. 

The unimportance of the holding period underneath the CAPM is based on the assumption 
of neutrality in the investment horizon, which also relies on the Brownian motion 
assumption. This implies that when returns are independent through time, then temporal 
consistency of volatility is valid, the square-root-of-time rule for scaling volatility can be 
used, and the investment horizon becomes irrelevant. However, in practice, financial time-
series frequency and holding period is relevant due to their long-term dependence. 

 

b. Adjusting CAPM for long-term dependence of financial returns 

Under long-term dependence of financial returns some traditional methods reliant on 
Brownian motion or random walk theory become invalid. Due to findings supporting 

                                                            
14 Please note that some authors refer to the non-diversifiable risk as systemic risk, instead of systematic risk.  
15 Notice that the classic CAPM formulation does not contains time sub-indexes.  
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dependence of returns, several measures of assets’ risk and performance can vary 
through different time horizons. In particular, Greene and Fielitz (1979 and 1980) show 
how a generalized version of the well-known Brownian motion (i.e. fractional Brownian 
motion) may serve to adjust CAPM formulae in order to consider the presence of long-term 
dependence of financial returns.   

According to Greene and Fielitz (1980), long-term dependent time series with Gaussian 
distributions may be modeled using the increments of a process called fractional Brownian 
motion. Fractional Brownian motion, denoted as ܤுሺݐሻ, is a continuous random function 
which is a moving average of past increments of ordinary Brownian motion, traditionally 
denoted as ܤሺݐሻ, where the parameter ܪ  determines the direction and intensity of the 
dependence, as presented in the previous section.16  

Let s be the size of the increments and let ؜ represent “identical in distribution”, then 
fractional Brownian motion is a self-similar process that follows a ݏு law for all ݐ and ݏ [F9], 
where the ܪ ൌ 0.5  case corresponds to customary Brownian motion 17 , and to the 
celebrated square-root-of-time-rule.  

ݐሺܤ ൅ ሻݏ െ ሻݐሺܤ ؜ ݐሺܤுሾݏ ൅ 1ሻ െ ሻሿݐሺܤ ׊ ,ݐ [F9] ݏ

Consequently, Greene and Fielitz (1979 and 1980) demonstrate that the variance and 
covariance of a fractional Brownian motion are a generalization of traditional Brownian 
motion. For two time series ݌ and ݍ, variances and covariance under a fractional Brownian 
motion are estimated as in [10 and 11] and [12], respectively; please note that when 
௣ܪ ൌ ௤ܪ ൌ 0.5 the variance and covariance of a fractional Brownian motion correspond to 
those distinctive of Brownian motion.  

ݎܸܽ ቂܤு೛
ሺݐ ൅ ሻݏ െ ு೛ܤ

ሺݐሻቃ ൌ ଶு೛ݏ ு೛ܤሾݎܸܽ
ሺݐ ൅ 1ሻ െ ு೛ܤ

ሺݐሻሿ [F10]

ݎܸܽ ቂܤு೜
ሺݐ ൅ ሻݏ െ ு೜ܤ

ሺݐሻቃ ൌ ଶு೜ݏ ு೜ܤሾݎܸܽ
ሺݐ ൅ 1ሻ െ ு೜ܤ

ሺݐሻሿ [F11]

ݒ݋ܥ ቄቂܤு೛
ሺݐ ൅ ሻݏ െ ு೛ܤ

ሺݐሻቃ , ቂܤு೜
ሺݐ ൅ ሻݏ െ  ሻቃቅݐ௤ሺܤ

ൌ ݒ݋ܥ ு೛ାு೜ݏ ቄቂܤு೛
ሺݐ ൅ 1ሻ െ ு೛ܤ

ሺݐሻቃ , ቂܤு೜
ሺݐ ൅ 1ሻ െ ு೜ܤ

ሺݐሻቃቅ 
[F12]

Since the fractional Brownian motion estimation of variances and covariance differs from 
the standard Brownian motion, CAPM’s measure of an asset’s systematic risk (ߚ௝) must be 
adjusted accordingly. Based on [F10, F11, F12], the required adjustment consists of using 
the Hurst exponents for the risky asset and the market (ܪ௝ and ܪ௠) instead of relying on 

                                                            
16 In this section we preserve Greene and Fielitz (1980) notation for the Hurst exponent (ܪ), which is based on 
the traditional (non-adjusted) estimation of the Hurst exponent. Next section, which presents numerical results, 
uses the adjusted Hurst exponent (ܪෙ) for all calculations.   
17 In this sense, fractional Brownian motion is a generalization of geometric Brownian motion (León and 
Reveiz, 2011b).   
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the customary (ܪ௝ ൌ ௠ܪ ൌ 0.5) assumption by Brownian motion. As exhibited in [13], this 
adjustment will result in an adjusted estimation of asset’s systematic risk (ߚሙ௝,௦):  

ሙ௝,௦ߚ ൌ
௝,௠ߪ൫ுೕାு೘൯ݏ

௠ߪሺଶு೘ሻݏ
ଶ  [F13]

Unlike traditional CAPM’s ߚ௝, long-term dependence adjusted CAPM’s ߚሙ௝,௦ varies with the 
size of the increment (s). This is, the systematic risk will be dependent on the investor’s 
holding period, with two exceptions: (i) both processes are long-term independent (ܪ௠ ൌ
௝ܪ ൌ 0.5), or (ii) both processes share the same adjusted Hurst exponent (ܪ௠ ൌ   .(௝ܪ

As expected, in absence of the mentioned exceptions, the variation of ߚሙ௝,௦  throughout 
different holding periods will depend on the sign and magnitude of the inequality between 
௠ܪ ሙ௝,௦ increases with s whenߚ ௝. From [F13] it is possible to infer thatܪ ௠ andܪ ൏  ௝, andܪ
decreses when ܪ௠ ൐ ௝ܪ . For three different scenarios ( ௠ܪ ൏ ௝ܪ ௠ܪ ; ൌ ௠ܪ ;௝ܪ ൐ ௝ܪ ),  
ceteris paribus 18 , Figure 1 exhibits how ߚሙ௝,௦  deviates from ߚ௝  with increasing holding 
periods.    

Figure 1 
Impact of three scenarios of dependence on ߚሙ௝,௦ 

௠ܪ) ൏ ௠ܪ ;௝ܪ ൌ ௠ܪ ;௝ܪ ൐     (௝ܪ

 
Source: authors’ calculations 

 
According to Figure 1, assuming investment horizon neutrality (ܪ௠ ൌ ௝ܪ ൌ 0.5) when the 
market’s and the risky asset’s intensity of long-term dependence differs may 
underestimate or overestimate the investor’s true exposure to systemic risk. Consequently, 
                                                            
18 Figure 1 is constructed with ߪ௝,௠ ൌ 0.00021 and ߪ௠

ଶ ൌ 0.00018, corresponding to actual data for Apple Inc. 
and S&P100; data provided by Bloomberg. 
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standard CAPM’s estimation of systemic risk may be misleading, where the severity of the 
problem increases with the holding period.19  

Finally, based on the estimation of ߚሙ௝,௦, the estimation of expected return based on the 
long-term dependence adjusted CAPM is also a function of the size of the increment (s):  

൫ܧ ௝ܴ,௦൯ ൌ ௙ܴ ൅ ሺܴ௠ሻܧሙ௝,௦ሾߚ െ ௙ܴሿ [F14]

Henceforth, as stressed by Greene and Fielitz (1980), in the presence of long-term 
dependence systematic risk estimates of the CAPM change with the differencing interval 
used to calculate returns. In this sense, as stressed by Holton (1992), absent a random 
walk risk becomes a two-dimensional quantity, with holding period almost as important a 
consideration as asset class. Consequently, standard performance measurement methods 
(i.e. Sharpe ratio, Treynor ratio, Jensen’s alpha) are also subject to this differencing 
interval problem when long-term dependence is present. Moreover, as discussed in León 
and Reveiz (2011a) and León and Vela (2011), this problem also affects traditional asset 
allocation models based on mean-variance optimization, such as standard Modern 
Portfolio Theory or even the more elaborated Black-Litterman model.   

Next section presents numerical results obtained when implementing the proposed 
adjustment to CAPM. Tests for the significance of the difference between standard and 
adjusted versions of CAPM are provided.  

 

4. Numerical evidence of CAPM bias due to long-term dependence 

Based on the set of 85 stocks pertaining to the S&P100 with daily data from January 1st 
2000 to June 21st 2012, this section presents numerical evidence of the bias resulting from 
overlooking long-term dependence of financial time series, along with the corresponding 
statistical significance. Figure 2 exhibits a scatter plot containing the observed relation 
between CAPM’s customary estimation of ߚ௝ (x-axis) and the herein proposed long-term-
dependency adjusted estimation of ߚሙ௝,௦  (y-axis), where the data set used has a daily 
frequency, the holding period (ݏ) is assumed to be one year (i.e. 252 days), and the 
adjusted Hurst exponent (ܪෙ) is estimated as in [F6].  

Because Figure 2 axis are symmetrical, if the long-term 1-year adjusted and unadjusted 
betas are equal (i.e. series are long-term independent or ܪෙ௠ ൌ  ෙ௝) the observations wouldܪ
appear along the 45 degree thick line; conversely, observations diverging from the 45 
degree solid line correspond to the case in which ܪෙ௠ ്  ෙ௝. Based on the standard error ofܪ
the estimation of each stock’s unadjusted beta, thin lines above and below the 45 degree 

                                                            
19 Based on the data used for Figure 1, the intensity of the error is about ±6.4% for a holding period equal to 
one week; ±12.0% for one month; ±22.3% for one year.    
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thick line represent the 99% confidence intervals; any divergence outside the region 
formed by the upper and lower intervals is statistically significant at 99%.      

Figure 2 
Comparing estimated ߚ௝ and ߚሙ௝,௦ 

(85 stocks from S&P100, 252-day holding period, 99% confidence interval) 

 
Source: authors’ calculations. 

 

According to authors’ calculations, about 63.5% of the observations significantly diverge 
from the independence assumption: using a 99% confidence level, 45.9% of the 
observations are significantly below the independence assumption (i.e. unadjusted beta is 
overestimated), whilst 17.6% are significantly above the independence assumption (i.e. 
unadjusted beta is underestimated). Annex A displays the complete data set used to 
construct Figure 2.  

In order to examine the impact of these findings three stocks will be studied next. The 
three selected stocks are Citibank (C), Nike (NKE) and Intel (INTC). Since ܪෙୗ&௉ଵ଴଴ ൌ
ෙେܪ ,0.4753 ൌ ෙ୒୏୉ܪ ,0.4937 ൌ 0.4464 and ܪෙ୍୒୘େ ൌ 0.4760, Citibank is representative of the 
case in which ܪෙ௠ ൏  ෙ௝, which results in an underestimated beta; Nike is representative ofܪ
the case in which ܪෙ௠ ൐  ෙ௝, which results in an overestimated beta; Intel corresponds toܪ
the traditional CAPM’s assumption where ܪෙ௠~ܪෙ௝ and where the long-term adjusted and 
unadjusted betas converge. Accordingly, Figure 3 confirms that CAPM’s long-term 
independence assumption results in an increasing bias in the estimated parameter for 
Citibank and Nike, where the former’s (latter’s) consists of an increasing underestimation 
(overestimation) of the parameter; Intel’s bias appears negligible.     
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Figure 3 
 ௝ throughout holding horizonsߚ ሙ௝,௦ andߚ

Citibank (C) 
ෙେܪ ൌ 0.4937 

Nike (NKE) 
ෙ୒୏୉ܪ ൌ 0.4464 

Intel (INTC) 
ෙ୍୒୘େܪ ൌ 0.4760 

Source: authors’ calculations. 

Table 1 displays relevant information regarding the impact of long-term dependence on the 
three selected stocks for a one-year holding period. The second column (ܪෙ) corresponds 
to the adjusted Hurst exponent; third column corresponds to CAPM’s customary estimation 
of ߚ௝, with its standard error (ߪఉೕ) and ܴଶ in columns fourth and fifth. Sixth column presents 

the herein proposed [F13] long-term-dependency adjusted estimation of beta (ߚሙ௝,௦). As 
expected, ignoring the long-term dependence results in CAPM underestimating the 
systemic risk of Citibank and overestimating Nike’s, whereas the impact on Intel is null. A 
customary t-statistic significance test of the divergence between ߚሙ௝,௦ and ߚ௝ is presented in 
the seventh column, with the null hypothesis (ߚ௝ ൌ  ሙ௝,௦) being rejected for Citibank andߚ
Nike at a 99% confidence interval, whilst it is not rejected for Intel.  
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Table 1 
Estimated 1-year holding period ࢐ࢼ and ࢼෙ࢐,࢙ 

Citibank, Nike and Intela 

Stock ࡴෙ  ࢙,ෙ࢐ࢼ ૛ࡾ ࢐ࢼ࣌ ࢐ࢼ 
࢐ࢼ െ ࢙,ෙ࢐ࢼ

࢐ࢼ࣌

 

C 0.49 1.78 0.04 0.45 1.97 -5.34 *** 
INTC 0.48 1.35 0.03 0.46 1.35 -0.19  
NKE 0.45 0.82 0.02 0.29 0.70 5.35 *** 

S&P100 0.48 1.00 N/A N/A 1.00 N/A  
(***) significant at 99%; (**) significant at 95%; (*) significant at 90%. 
a Calculations for the selected 85 stocks are included in Annex A. 
Source: authors’ calculations.  

 

However, in order to avoid relying on –and inferring from- a single estimation of the ߚሙ௝,௦ 
and ߚ௝  parameters, a bootstrap procedure (resampling with replacement) was 
implemented to approximate the empirical distribution of the parameters for the period 
under study.20 In this sense, based on daily data for these three stocks, 5,000 estimations 
of 1-year holding period ߚሙ௝,௦ and ߚ௝ were made from an equal number of resampled 252-
days 21  windows. Such procedure results in the simulated density function of both 
parameters for each stock, for a 1-year holding period. Figure 4 displays the probability 
plot corresponding to each simulated density function.   

Figure 4 
Probability plots of simulated density functions of ߚሙ௝,௦ and ߚ௝ 

Citibank (C) 
ෙେܪ ൌ 0.4937 

Nike (NKE) 
ෙ୒୏୉ܪ ൌ 0.4464 

                                                            
20 As acknowledged by Dowd (2005), the main purpose of bootstrap is to assess the accuracy of parameter 
estimates, where a new –larger- sample is built from the original data set, without depending on potentially 
unreliable assumptions such as normality or the existence of large samples. 
21  Customary usage of CAPM usually consists of using last year of daily observations (i.e. 252 days 
approximately) in order to make estimations for 1-year holding horizon. Using other lengths (e.g. 100 and 500 
days) did not affect the analysis.   
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Intel (INTC) 
ෙ୍୒୘େܪ ൌ 0.4760 

Source: authors’ calculations. 

The density function confirms that ignoring long-term dependence of time series results in 
CAPM’s overestimation of the parameter for Citibank, with the long-term adjusted beta 
dominating the non-adjusted beta in the probability plot; this is, ߚሙ௝,௦ ൒  ௝ for any probabilityߚ
level. Likewise, the density function confirms that CAPM overestimates Nike’s beta, where 
ሙ௝,௦ߚ ൑  ௝ for any probability level. As expected, unlike the case of Citibank and Nike, bothߚ
Intel’s density functions, long-term adjusted and non-adjusted, appear to be identical.  

Despite the mere inspection of the probability plots for these three stocks seems 
conclusive, Table 2 provides two non-parametric tests of distributional equality.22 The first 
test, two-sample Kolmogorov-Smirnov, tests the null hypothesis that both samples’ are 
from the same continuous distribution; the second, the Mann-Whitney U, tests the null 
hypothesis that both samples are independent samples from identical continuous 
distributions with equal medians.23       

 

 

 

 

 

                                                            
22 Non-parametric tests are required since standard tests (i.e. Jarque-Bera, Lilliefors and Kolmogorov-Smirnov) 
rejected the null hypothesis of normality of the observations pertaining to the simulated density functions.    
23 The Kolmogorov-Smirnov test compares the empirical distribution of two samples, where the statistic is 
calculated as the maximum absolute difference between the two distributions. The U test of Mann-Whitney is 
defined as the number of times that Y preceeds X, where X and Y are sorted in an ascended way. Both tests 
are described in Gibbons and Chakraborti (2003). 
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Table 2 
Estimated 1-year holding period ࢐ࢼ and ࢼෙ࢐,࢙ 

Citibank, Nike and Intela 

Stock ࡴෙ  ࢙,ෙ࢐ࢼ ૛ࡾ ࢐ࢼ࣌ ࢐ࢼ 
࢐ࢼ െ ࢙,ෙ࢐ࢼ

࢐ࢼ࣌

K-S 
Testb 

M-W 
Testc 

C 0.49 1.78 0.04 0.45 1.97 -5.34 *** 0.18 *** 15,7 *** 
INTC 0.48 1.35 0.03 0.46 1.35 -0.19  0.02  1,1  
NKE 0.45 0.82 0.02 0.29 0.70 5.35 *** 0.45 *** -38,5 *** 
S&P100 0.48 1.00 N/A N/A 1.00 N/A N/A  N/A  
(***) significant at 99%; (**) significant at 95%; (*) significant at 90%. 
a Calculations for the selected 85 stocks is included in Annex A. 
Source: authors’ calculations. Source: authors’ calculations. Data from Bloomberg. 

 

Table 2 shows that both tests reject the null hypothesis corresponding to the simulated 
distributions of ߚሙ௝,௦ and ߚ௝ belonging to identical continuous distributions for Citibank and 
Nike; as before, Intel’s null hypothesis can’t be rejected. This confirms visual inspection of 
the simulated density function, along with standard t-statistic of the difference between 
estimated ߚሙ௝,௦ and ߚ௝.  

As presented in Annex A, the three tests herein implemented confirm that most of the 
selected 85 stocks exhibit significant bias in the estimation of their beta parameter under 
the assumption of long-term independence. At a 99% confidence level, the conventional t-
statistic, the Kolmogorov-Smirnov and the Mann-Whitney tests, they reject the null 
hypothesis of identical betas after adjusting for long-term dependence for 63.5%, 98.82% 
and 97.65% of the stocks, respectively. 

Consequently, as a result of the aforementioned estimation bias, it is fair to anticipate that 
expected returns should also be biased. 24  Based on the long-term adjusted and 
unadjusted standard equation of the CAPM [F14 and F7, respectively], let the risk free rate 
equal the 1-year rate extracted from the U.S. Treasury zero coupon curve ( ௙ܴ ൌ 0.23%); 
the expected return of the market equal the annualized mean return of the last year of data 
of the S&P100 (ܧሺܴ௠ሻ ൌ 5.37%); the ߚሙ௝,௦ and ߚ௝ equal those reported in Annex 2, Figure 5 
exhibits the difference between the long-term adjusted (ܧ൫ ௝ܴ,௦൯) and unadjusted (ܧ൫ ௝ܴ൯) 
expected returns for each of the 85 stocks selected.25  

 
 
 
 

                                                            
24 Please note that significance tests were conducted based on the divergence between ߚሙ௝,௦ and ߚ௝ since these 
parameters require less user-defined inputs than the resulting expected returns. 
25 The risk free rate and the expected market return are calculated as of 21st June 2012.  
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Figure 5 
Comparing estimated expected returns (ܧ൫ ௝ܴ,௦൯ െ ൫ܧ ௝ܴ൯)  

(85 stocks from S&P100, 252-day holding period, in basis points) 

 
Positive results correspond to the ܧ൫ ௝ܴ,௦൯ ൐ ൫ܧ ௝ܴ൯ case (i.e. traditional CAPM underestimates expected return)    

Source: authors’ calculations. 
 

Since the difference is calculated as ( ൫ܧ ௝ܴ,௦൯ െ ൫ܧ ௝ܴ൯ ), positive (negative) results 
correspond to the underestimation (overestimation) of the expected return under the long-
term independence assumption. In this sense, based on the herein proposed investment 
horizon dependent CAPM, the 1-year equilibrium expected return for Citibank is 81.84bps 
higher than traditional CAPM estimates; for Nike it is 60.30bps lower, and for Intel 2.63bps 
higher. For the whole sample (85 stocks) the mean absolute bias is about 59.07bps.    

5. Final remarks 

It is obvious that an investor will always regard his investment horizon as a relevant input 
for designing his portfolios; likewise, it is also evident that a financial officer will consider 
an assets’ holding period for making investment decisions. However, the CAPM, which is 
considered the most successful and enduring model for asset pricing and returns 
forecasting, disregards time (i.e. the investment horizon) as an important input; this results 
in market risk –the beta- being constant over any holding period.   
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As forewarned by Holton (1992), after relaxing the long-term independence assumption 
risk becomes a two-dimensional quantity, with holding period almost as important a 
consideration as asset class. For the CAPM, Greene and Fielitz (1980) alert that in the 
presence of long-term dependence systematic risk estimates of the CAPM –the betas- 
change with the differencing interval used to calculate returns. Based on numerical 
evidence provided in this paper, worries by Holton and Green and Fielitz are genuine and 
statistically significant: according to three tests herein implemented with a 99% confidence 
level, more than 60% of the stocks under analysis exhibit significantly different beta 
parameters, and the resulting equilibrium expected return exhibits a േ60bps bias for a 
contemporary one-year investment horizon.  

Because of the significance of the results and the importance of the CAPM for theoretical 
and practical purposes, the herein proposed procedure to adjust betas for long-term 
dependence may provide investors, asset managers and financial officers a parsimonious 
method to relax the long-term independence assumption and attain a convenient 
investment horizon dependent CAPM. As quantitatively demonstrated, the relevance of the 
adjustment increases with the investment horizon; therefore, long-term investors or asset 
managers (e.g. pension funds, sovereign wealth managers, and foreign reserves 
managers) will profit from employing a CAPM model where the holding period is 
significant.   
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7. Annex A 

Estimated 1-year holding period ࢐ࢼ and ࢼෙ࢐,࢙for selected S&P100 
stocksa 

Stock ࡴෙ  ࢙,ෙ࢐ࢼ ૛ࡾ ࢐ࢼ࣌ ࢐ࢼ 
࢐ࢼ െ ࢙,ෙ࢐ࢼ

࢐ࢼ࣌

K-S 
Testb 

M-W 
Testc 

DELL 0.51 1.16 0.03 0.35 1.44 -9.65 *** 0.54 *** 49,5 *** 
GD 0.52 0.68 0.02 0.28 0.87 -9.59 *** 0.49 *** 39,4 *** 
F 0.52 1.18 0.04 0.26 1.52 -9.46 *** 0.53 *** 53,3 *** 
FCX 0.52 1.26 0.04 0.27 1.59 -9.01 *** 0.41 *** 29,0 *** 
CAT 0.50 1.11 0.02 0.46 1.30 -8.94 *** 0.30 *** 32,3 *** 
AAPL 0.52 1.15 0.04 0.25 1.46 -8.88 *** 0.38 *** 43,2 *** 
NOV 0.51 1.27 0.04 0.28 1.50 -6.25 *** 0.29 *** 22,9 *** 
JPM 0.49 1.58 0.02 0.56 1.74 -6.18 *** 0.28 *** 25,1 *** 
C 0.49 1.78 0.04 0.45 1.97 -5.34 *** 0.18 *** 15,7 *** 
EMC 0.50 1.35 0.03 0.33 1.52 -5.21 *** 0.39 *** 26,8 *** 
LMT 0.50 0.54 0.02 0.17 0.62 -3.77 *** 0.42 *** 32,5 *** 
HD 0.49 1.05 0.02 0.41 1.14 -3.69 *** 0.30 *** 29,5 *** 
HON 0.49 1.12 0.02 0.45 1.20 -3.63 *** 0.29 *** 27,0 *** 
TWX 0.49 1.19 0.03 0.41 1.26 -2.68 *** 0.24 *** 15,5 *** 
MRK 0.49 0.71 0.02 0.25 0.76 -2.39 *** 0.24 *** 25,2 *** 
MSFT 0.48 1.09 0.02 0.48 1.13 -2.01 ** 0.17 *** 16,0 *** 
GE 0.48 1.22 0.02 0.59 1.24 -1.64 ** 0.10 *** 8,2 *** 
TGT 0.48 1.00 0.02 0.36 1.04 -1.52 * 0.14 *** 11,3 *** 
MDT 0.48 0.66 0.02 0.26 0.69 -1.48 * 0.16 *** 11,5 *** 
IBM 0.48 0.89 0.02 0.45 0.91 -1.23  0.13 *** 8,4 *** 
SBUX 0.48 1.03 0.03 0.33 1.06 -0.99  0.10 *** 8,4 *** 
LOW 0.48 1.05 0.02 0.39 1.07 -0.76  0.09 *** 7,6 *** 
HAL 0.48 1.15 0.04 0.25 1.17 -0.52  0.04 *** 2,9 *** 
INTC 0.48 1.35 0.03 0.46 1.35 -0.19  0.02  1,1  
USB 0.47 1.19 0.03 0.41 1.18 0.38  0.04 *** -2,4 ** 
CSCO 0.47 1.41 0.03 0.45 1.39 0.56  0.09 *** -4,6 *** 
BMY 0.47 0.67 0.02 0.22 0.65 0.65  0.06 *** -4,4 *** 
DOW 0.47 1.16 0.03 0.40 1.14 0.69  0.08 *** -5,5 *** 
QCOM 0.47 1.28 0.03 0.32 1.25 0.75  0.06 *** -4,7 *** 
BA 0.47 0.93 0.02 0.37 0.91 0.94  0.07 *** -6,1 *** 
DD 0.47 1.01 0.02 0.49 0.99 1.11  0.15 *** -8,4 *** 
WAG 0.47 0.65 0.02 0.24 0.62 1.35 * 0.16 *** -9,7 *** 
DIS 0.47 1.08 0.02 0.47 1.05 1.48 * 0.12 *** -10,3 *** 
FDX 0.47 0.96 0.02 0.39 0.92 1.50 * 0.11 *** -8,6 *** 
MCD 0.46 0.56 0.02 0.21 0.52 1.68 ** 0.12 *** -9,5 *** 
AMGN 0.47 0.83 0.03 0.25 0.78 1.72 ** 0.13 *** -11,9 *** 
ABT 0.46 0.51 0.02 0.19 0.48 1.79 ** 0.15 *** -13,6 *** 
BHI 0.47 1.06 0.03 0.27 1.00 1.79 ** 0.12 *** -8,2 *** 
ALL 0.47 1.04 0.02 0.38 1.00 1.81 ** 0.09 *** -6,7 *** 
PFE 0.47 0.74 0.02 0.33 0.71 1.81 ** 0.19 *** -16,0 *** 
MMM 0.47 0.80 0.02 0.45 0.77 1.82 ** 0.12 *** -10,8 *** 
RTN 0.46 0.58 0.02 0.16 0.53 1.90 ** 0.23 *** -20,8 *** 
WMB 0.46 1.40 0.05 0.21 1.30 2.13 ** 0.23 *** -13,1 *** 
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AEP 0.46 0.62 0.02 0.23 0.58 2.14 ** 0.18 *** -16,7 *** 
SLB 0.47 1.07 0.03 0.33 1.01 2.18 ** 0.22 *** -11,1 *** 
BAX 0.46 0.54 0.02 0.16 0.49 2.18 ** 0.16 *** -15,8 *** 
MS 0.47 1.96 0.03 0.55 1.88 2.62 *** 0.18 *** -12,3 *** 
SO 0.45 0.40 0.02 0.17 0.35 2.75 *** 0.24 *** -16,0 *** 
BRK/B 0.46 0.54 0.02 0.22 0.48 2.93 *** 0.17 *** -12,7 *** 
VZ 0.46 0.76 0.02 0.34 0.70 3.07 *** 0.18 *** -17,2 *** 
MO 0.44 0.45 0.02 0.13 0.38 3.55 *** 0.33 *** -24,0 *** 
ORCL 0.46 1.33 0.03 0.39 1.22 3.61 *** 0.18 *** -17,7 *** 
APC 0.45 1.01 0.03 0.27 0.90 3.82 *** 0.18 *** -13,2 *** 
CVS 0.45 0.67 0.02 0.19 0.57 3.88 *** 0.35 *** -29,7 *** 
HPQ 0.46 1.13 0.03 0.36 1.02 4.09 *** 0.22 *** -21,8 *** 
UTX 0.46 0.97 0.02 0.47 0.90 4.19 *** 0.35 *** -34,3 *** 
LLY 0.45 0.66 0.02 0.24 0.57 4.30 *** 0.32 *** -25,8 *** 
JNJ 0.45 0.51 0.01 0.27 0.44 4.33 *** 0.30 *** -26,9 *** 
HNZ 0.45 0.46 0.02 0.22 0.39 4.49 *** 0.37 *** -30,4 *** 
PG 0.44 0.50 0.02 0.19 0.41 5.13 *** 0.31 *** -30,6 *** 
COF 0.45 1.67 0.04 0.41 1.48 5.31 *** 0.27 *** -23,0 *** 
NKE 0.45 0.82 0.02 0.29 0.70 5.35 *** 0.45 *** -38,5 *** 
AMZN 0.44 1.31 0.04 0.21 1.06 5.43 *** 0.29 *** -32,0 *** 
PEP 0.44 0.47 0.02 0.22 0.39 5.45 *** 0.46 *** -42,9 *** 
CL 0.44 0.50 0.02 0.20 0.40 5.47 *** 0.45 *** -44,0 *** 
BK 0.46 1.44 0.03 0.51 1.31 5.47 *** 0.37 *** -27,4 *** 
T 0.44 0.80 0.02 0.34 0.67 6.45 *** 0.29 *** -30,9 *** 
BAC 0.45 1.64 0.03 0.43 1.42 6.51 *** 0.34 *** -26,7 *** 
KO 0.43 0.51 0.02 0.23 0.40 6.66 *** 0.54 *** -48,0 *** 
WMT 0.44 0.68 0.02 0.31 0.55 7.10 *** 0.43 *** -39,4 *** 
UNP 0.44 0.87 0.02 0.37 0.71 7.65 *** 0.45 *** -35,5 *** 
COST 0.43 0.84 0.02 0.30 0.66 7.66 *** 0.47 *** -48,9 *** 
NSC 0.44 1.00 0.02 0.35 0.81 7.72 *** 0.49 *** -47,8 *** 
UNH 0.42 0.77 0.03 0.22 0.57 7.73 *** 0.31 *** -33,9 *** 
EXC 0.42 0.62 0.02 0.23 0.46 7.82 *** 0.34 *** -32,5 *** 
SPG 0.44 1.10 0.03 0.37 0.89 8.37 *** 0.23 *** -17,0 *** 
APA 0.42 0.93 0.03 0.26 0.67 9.28 *** 0.44 *** -30,8 *** 
AXP 0.45 1.45 0.02 0.58 1.25 9.36 *** 0.36 *** -32,6 *** 
XOM 0.44 0.83 0.02 0.44 0.67 9.42 *** 0.44 *** -39,7 *** 
COP 0.43 0.86 0.02 0.35 0.66 9.60 *** 0.50 *** -35,0 *** 
CVX 0.43 0.83 0.02 0.42 0.64 10.75 *** 0.55 *** -38,8 *** 
OXY 0.42 1.00 0.02 0.35 0.72 11.24 *** 0.53 *** -34,1 *** 
WFC 0.43 1.34 0.03 0.42 1.02 11.37 *** 0.35 *** -33,2 *** 
CMCSA 0.41 1.12 0.02 0.40 0.79 13.60 *** 0.68 *** -65,6 *** 
EMR 0.42 1.03 0.02 0.50 0.76 14.62 *** 0.78 *** -71,9 *** 
S&P100 0.48 1.00 N/A N/A 1.00 N/A N/A  N/A  
a S&P100’s stocks with missing data for the analyzed period (January 1st 2000 – June 21st 2012) were discarded. 
Remaining stocks (85) are ordered according to the significant test on seventh column. The 1-year treasury zero 
coupon rate was used as the risk free rate. The expected return of the market corresponds to the annualized average 
daily log-return of the S&P100.      
 (***) significant at 99%; (**) significant at 95%; (*) significant at 90%. 
Source: authors’ calculations.  
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