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Abstract 

 

 

This paper investigates whether transforming the Consumer Price Index with a class of power 

transformations lead to an improvement of inflation forecasting accuracy. We use one of the 

prototypical models to forecast short run inflation which is known as the univariate time series 

ARIMA . This model is based on past inflation which is traditionally approximated by the 

difference of logarithms of the underlying consumer price index. The common practice of 

applying the logarithm could damage the forecast precision if this transformation does not 

stabilize the variance adequately. In this paper we investigate the benefits of incorporating these 

transformations using a sample of 28 countries that has adopted the inflation targeting 

framework. An appropriate transformation reduces problems with estimation, prediction and 

inference. The choice of the parameter is done by bayesian grounds.         
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1. Introduction 

 

To date, a total of 28 countries have committed to an inflation target as the anchor of their 

monetary policy in order to achieve price stability. For this reason, forecasting inflation has 

become crucial for policy makers to decide on how to conduct the economic policy. From the 

statistics point of view, the leading approach to forecast short run inflation rely on the traditional 

Box and Jenkins time series building methodology, which fit seasonal autoregressive integrated 

moving average models to the first differences of logarithms of the underlying price index. Even 

though this common practice of applying the logarithm transformation of the Consumer Price 

Index enjoys advantages related to interpretation issues, the inflation forecasts are not necessarily 

optimal if this transformation does not stabilize properly the variance. In this paper, we analyze 

whether or not the incorporation of power transformations into the identification stage of the 

ARIMA models leads to an improvement of inflation forecasting accuracy. Specifically, we 

conduct an experiment taking into account four possible transformation strategies for the optimal 

parameter of the Box-Cox family and we compare the forecast precision through the mean 

squared error and the mean absolute error for different horizons.      

The rest of the paper is organized as follows. In section 2 we review the use of power 

transformations in models and present the bayesian strategy to choose the optimal transformation 

for the total CPI for 19 countries. The data models and forecasts are displayed in the next section. 

Then, in section 4 we present a rolling point forecast comparison with different transformations. 

Finally, in section 5 we summarize the main contributions of this paper and conclusions. 

     

2. Power transformations in ARIMA models 

 

    The use of transformations of a variable as a preliminary specification to construct a forecast 

model has been recommended into the times series model building methodology since the 

implementation of the ARIMA models by Box and Jenkins (1970). They claim that better 

forecasts could arise when a model is broadened to include the general class of power 

transformations. The transformation of the observations known as the Box-Cox (B-C) satisfies 

certain underlying modeling assumptions on the residuals such as: normality, iid, and a constant 

variance about a zero mean level and is given by: 
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Where   ( ) denotes the nonstationary variable and λ is the transformation parameter.  The role 

of this transformation is to preserve the ordering of the data and change the shape of the 

distribution. Thus, when 1  the series is analyzed in its original scale, and  0  corresponds 

to a logarithmic transformation. In Figure 1 different patterns for   are shown. 

 

Figure 1 - Box-Cox Transformation for values of λ 

 

       

      We consider the following possible transformation strategies: a) use no transformation, b) use 

the logarithmic transformation, c) use a power transformation with λ estimated by Bayesian 

MCMC  methods. 

2.1 Deciding on the parameter λ 

 

The parameter is usually estimated by maximum likelihood under the assumption of a parametric 

distribution for the transformed series. Constructing the profile likelihood, the parameter   is 

chosen taking into account that the change of the scale is corrected by the Jacobian. This 

approach works well only if the Box Cox transformation converts the distribution to a normal, 

but there is always uncertainty about the right model.  Therefore, we use a Bayesian approach to 

make inferences about the parameter . 

Bayesian analysis exploits the combination between the data likelihood and the prior distribution 

about λ in order to obtain its posterior distribution from which the inferences are based. 
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Thus, we use the Markov Chain Montecarlo (MCMC) methods and the Metropolis algorithm to 

obtain the posterior distribution for λ. 

The transformed response )(y is assumed to follow a normal distribution 
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The parameters of the model are the following: },,...,,{ 2

1  p   

 We use a flat prior },...,{ 1 p on and an inverse gamma for 2 .  

 

3. The data 
 

We use a set of monthly series of CPI, seasonally unadjusted, from 19 countries with inflation 

target as the anchor of their monetary policy. This set was taken from the IMF database of 

International Financial Statistics. The sample was chosen to take into account when the inflation 

targeting scheme began to be implemented in each country. The sample period differs within 

series and it is available in Table 1 - Sample Period  



Table 1 - Sample Period 

Country Sample Period

Brazil 1999 M1 - 2011 M12

Canada 1991 M1 - 2012 M12

Chile 1990 M1 - 2012 M12

Colombia 1999 M1 - 2011 M12

Czech Republic 1998 M1 - 2011 M12

Hungary 2001 M1- 2012 M12

Iceland 2002 M1- 2012 M12

Israel 1992 M1 - 2011 M12

Mexico 1999 M1 - 2011 M12

Norway 2001 M1- 2012 M12

Peru 2002 M1- 2012 M12

Phillippines 2002 M1- 2012 M12

Poland 1998 M1 - 2011 M12

South Africa 2000 M1- 2012 M12

South Korea 1998 M1 - 2011 M12

Sweden 1993 M1 - 2012 M12

Switzerland 2000 M1- 2012 M12

Thailand 2000 M1- 2012 M12

United Kingdom 1992 M1 - 2011 M12

Seasonally Unadjusted

Monthly CPI Series

Source: IMF International Financial Statistics 

Database  

 

 

Plots of the series are shown on Figure 2.  The series have not apparent changes in their seasonal 

pattern or structural breaks over the period analyzed. It also may seem that some CPI have 

increases in their seasonal fluctuations in level specification which can be alleviated with 

transformations of the series. But, in order to test the effectiveness of these transformations on 

the forecast performance, and following the main goal of this paper, we consider the level 

specification, the log specification, and the Box-Cox transformation that is recommended for the 

series in our exercise.  



Figure 2 - Monthly CPI Series 

 



We test for zero frequency unit roots and seasonal unit roots, using standard ADF and HEGY 

approximations, following (Lütkepohl & Xu, 2009). For most of the series, there is evidence for 

one zero frequency root and some seasonal ones. These results can be observed in Table 2, but 

we do not present detailed information since these results do not help to decide whether level, log 

or Box-Cox specifications are better to forecast accurately.  

Table 2 - Unit Root Tests 

Brazil -2.1771 (1) -1.3065 (1) -1.832 (1) 0.2927 (12) 0.1512 (12) -0.2480 (13) 1, 2 (0) 1, 2 (0) 1,2 (0)

Canada -2.3141 (1) -2.6558 (1) -2.239 (1) -2.1931 (12) -2.3117 (12) -2.1620 (12) 1,2,3/4 (0) 1,2,3/4 (1) 1,2,3/4 (0)

Chile -2.9553 (1) -6.5277 *** (1) -2.679 (1) -1.2720 (13) -3.9165 *** (12) 0.5510 (12) 1, 2 (1) 1,2,3/4 (0) 1,2 (0)

Colombia -1.8581 (1) -1.3904 (1) -2.094 (1) 0.3719 (12) -0.6319 (12) 0.5320 (12) 1,2,3/4 (0) 1,2,3/4,7/8 (0) 1,2,3/4 (0)

Czech Republic -1.8366 (2) -1.8366 (2) -1.747 (2) 0.7869 (12) 0.6362 (12) 0.8200 (12) 1,2,3/4 (0) 1,2,3/4 (0) 1,2,3/4 (0)

Hungary -1.4465 (7) -1.9947 (2) -1.781 (2) -1.1106 (12) -0.7893 (12) -1.1830 (12) 1,2,3/4,7/8 (12) 1,2,3/4,7/8 (14) All but 11/12 (0)

Iceland -2.1859 (6) -2.1859 (6) -2.183 (6) 0.3062 (12) 0.5551 (12) 0.3030 (12) 1,2,3/4 (0) 1,2,3/4 (0) 1,2,3/4 (0)

Israel -1.9177 (1) -2.7132 (1) -1.783 (1) -0.4038 (12) -1.0426 (12) -1.4670 (13) 1,2,3/4 (0) 1,2,3/4 (0) 1,2,3/4 (0)

Mexico -2.2926 (1) -4.4065 *** (1) -0.977 (1) -1.4679 (12) -3.8352 *** (12) -0.6130 (12) 1,2,3/4,7/8 (0) 1,2,3/4 (0) 1,2,3/4 (0)

Norway -2.9266 (1) -3.2164 * (1) -2.895 (1) -2.3057 (12) -2.5042 (12) -2.2830 (12) 1,2,3/4 (0) 1,2,3/4 (0) 1,2,3/4 (0)

Peru -1.4105 (1) -1.7453 (1) -1.242 (1) 1.0438 (12) 0.7960 (12) 1.1710 (12) 1,2,3/4 (1) 1,2,3/4 (1) 1,2,3/4 (1)

Phillippines -3.2503 (1) -2.2290 (1) -3.361 * (1) -0.6620 (12) -1.7965 (12) -1.6460 (13) 1,2,3/4 (0) 1,2,3/4 (0) 1,2,3/4 (0)

Poland -1.4914 (1) -2.1402 (1) -1.089 (1) -0.3744 (12) -1.2894 (12) -0.0050 (12) 1,3/4 (0) 1,3/4 (0) 1,3/4 (0)

South Africa -0.7701 (1) -1.3150 (1) -0.978 (1) 1.1096 (12) 1.5773 (12) 0.9630 (12) 1,2,3/4 (0) 1,2,3/4 (0) 1,2,3/4 (0)

South Korea -2.7675 (1) -4.0723 *** (1) -2.463 (1) -1.2831 (12) -1.5956 (12) -1.1760 (12) 1,2,3/4 (3) 1,2,3/4 (3) 1,2,3/4 (6)

Sweden -1.0603 (1) -1.3555 (1) -0.948 (1) 0.1270 (12) -0.0062 (12) 0.1270 (12) 1,3/4 (1) 1,3/4 (1) 1,3/4 (1)

Switzerland -2.1404 (6) -0.8804 (3) -2.156 (6) -1.1944 (12) -1.2055 (12) -1.1910 (12) 1,3/4 (0) 1,3/4 (0) 1,3/4 (0)

Thailand -2.7843 (1) -2.7515 (1) -2.782 (1) -1.6735 (12) -1.6620 (12) -1.6730 (12) 1,2,3/4 (0) 1,2,3/4 (0) 1,2,3/4 (0)

United Kingdom 2.9421 (0) 0.9500 (1) 3.494 (0) -0.2138 (12) -0.9300 (12) 0.1030 (12) 1,2,3/4 (6) 1,2,3/4 (6) 1,3/4 (0)

Unit Root Properties of Total CPI Series for Sample Period since Inflation Targeting

Country
ADF with trend and seas. Dummies ADF with constant Roots not rejected by HEGY with seas. Dummies

level log Box-Cox ∆12 level ∆12 log ∆12 Box-Cox ∆ level ∆ log ∆ Box-Cox

Note: Lag selection by AIC with maximum order 14, lag order given in parentheses. 5% critical values for ADF test: -3.41 (with trend), -2.86 (with constant). HEGY test with 

seasonal dummies, results based on 5% signī cance level. Computations of HEGY test were performed with JMulTi (Luetkepohl and Kratzig (2004)). ADF test was performed 

wit R - Project

 

 Also, we analyze the spectrum of the series in order to identify the importance in total variation 

of their seasonal component. In Figure 3 we present the logarithm of the smoothed sample 

spectra. The subtle fluctuations on the spectra may suggest for almost all of the countries that the 

seasonal part of the series has recently gained importance for explaining their behavior.  



Figure 3 - Smoothed Spectrum 

 
Note:  we reduce the spectrum variability by using the Daniell spectral window with     and also we consider a 

cosine bell taper of 10%. 

 

4. Models for forecasting seasonal time series 

 

The leading approach to obtain forecasts is using either models based on stochastic seasonality or 

deterministic seasonality. The former class strategy relies on the traditional time series building 

methodology of Box and Jenkins (1970) which fit autoregressive integrated moving average models 

to the observed consumer prices series.  These models are assumed to have seasonal unit roots and 

to induce stationarity, it is necessary to seasonally differentiate the series. We estimate two versions 



of these kinds of models for various values of  λ.  Also, we estimate models with seasonal unit roots 

and the Airline model. (See Lutketpoll and Xu , 2011). 

 

On the other hand, we consider models with deterministic seasonality which allows the mean to vary 

with the month in a deterministic way.   
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Where itD corresponds to seasonal dummy variables that take the value of one if the observation t  is 

in the month i  and zero otherwise.   t  is the annual inflation rate calculated with different 

estimations of  . 

Based on the proposed models, the forecasts and its forecast errors are calculated. To measure the 

predictive performance of the different models, we use a cross-validation strategy known as rolling-

forecasting origin. It is a simple procedure in which we choose a training set and a test set to 

compare the forecasts results through a measure of the accuracy as the minimum error absolute, 

MAE. This accuracy measures are obtained as follows: 

1. We set      as the minimum number of observations in the training set. 

2. We select the observation k+i+1 for the test set, where               and n is the 

total number of observations and differs for each country.  

3. We forecast 12 steps-ahead based on data to k+i and compute MAE  

4. Then, we repeat for i observations 

5. We compare MAE values for each forecast horizon. 

Table 3 contains the results of this evaluation. Considering total inflation for 19 countries, the 1-step 

forecasts are optimal for the log transformation in 57% of the countries analyzed.  On the other 

hand, in 32% of the countries the best forecast is based under the Box–Cox transformation. Only the 

2% of the countries achieve the best forecast with the levels of the consumer price index.  Taking 

into account the 12-step horizon, we found that the use of Box-Cox transformation leads to more 

accurate forecasts in 53% of the countries analyzed.  Models based on levels and logs are optimal in 

22% of the cases respectively.                    

 

 

 



Table 3 - Forecasting Results for total CPI series 

 

 

5. Conclusions 

 

In this paper we investigate the benefits of using a general class of transformations of the underlying 

consumer price index in order to improve annual inflation forecasts in countries committed with an 

inflation targeting regime. We found mixed results in evaluating the forecast precision of different 

horizons. Thus, for the 1-step forecast, the models based on logs leads to optimal forecasts in 

approximately a half of the sample of countries analyzed. However, for the 12-step forecast the Box-

Cox transformation dominates the models based either on logs or levels. Therefore, in a large 

proportion of countries that adopted the inflation targeting scheme, the tradition of using annual 

inflation, calculated as first differences of logarithms of the CPI index, produces inaccurate forecasts 

and the use of power transformations on observations could improve its precision.   

Moreover, our results indicate that using deterministic seasonal models lead to precise forecasts than 

stochastic models for these countries during the period of time analyzed.  A possible cause arise 

because the fall of inflation from two digits to one in the last decade have caused the seasonality 

component be more explicative and a better job is done through a deterministic modeling strategy.  

ds ss Airline Overall ds ss Airline Overall

Residuals MAE MAE MAE MAE MAE MAE

Brazil Log Log Box-Cox ss+ Log Box-Cox Level Level ds+Box-Cox

Canada Box-Cox Log Log Airline+Log Log Log Log ds+Log

Chile Box-Cox Box-Cox Box-Cox ds+Box-Cox Box-Cox Box-Cox Box-Cox ds+Box-Cox

Colombia Log Box-Cox Log Airline+Log Log Box-Cox Box-Cox ds+Log

Czech Republic Log Box-Cox Log ss+Box-Cox Log Box-Cox Box-Cox ds+Log

Hungary Box-Cox Log Log ss+Log Box-Cox Log Box-Cox ds+Box-Cox

Iceland Box-Cox Log Level Airline+Box-Cox Box-Cox Box-Cox Box-Cox ds+Box-Cox

Israel Level Log Level Airline+Box-Cox Box-Cox Box-Cox Box-Cox ds+Box-Cox

Mexico Level Level Box-Cox ds+Level Box-Cox Box-Cox Level ds+Box-Cox

Norway Log Log Log ss+Log Non Conclusive Non conclusive Non Conclusive ds

Peru Log Level Level ss+Level Level Non conclusive Non Conclusive ds+Level

Phillippines Box-Cox Level Level Airline+Box-Cox Box-Cox Log Level ds+Box-Cox

Poland Log Level Box-Cox ss+Log Level Box-Cox Box-Cox ds+Level

South Africa Box-Cox Level Level Airline+Box-Cox Level Level Log ds+Level

South Korea Box-Cox Log Log ss+Log Box-Cox Non conclusive Log ds+Box-Cox

Sweden Log Log Box-Cox ds+Log Box-Cox Log Non Conclusive ds+Box-Cox

Switzerland Box-Cox Log Box-Cox ss+Log Box-Cox Non conclusive Non Conclusive ds+Box-Cox

Thailand Box-Cox Box-Cox Log Airline+Log Log Log Log ds+Log

United Kingdom Log Log Box-Cox ss+Log Non Conclusive Log Log ds

Country
Best 1-Step Forecast Best 12-Step Forecast



This is a preliminary, in a future version of the document we will extend the estimation to others 

type of inflation measurements useful for policy makers.  For instance, CPI headline inflation, CPI 

food and no tradable inflation.     
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