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Abstract 

This document explores the predictive power of the yield curves in Latin America (Colombia, 

Mexico, Peru and Chile) taking into account the factors set by the specifications of Nelson & 

Siegel and Svensson. Several forecasting methodologies are contrasted: an autoregressive 

model, a vector autoregressive model, artificial neural networks on each individual factor, and 

artificial neural networks on all factors that explain the yield curve. The out-of-sample 

performance of the fitting models improves with the neural networks in the one-month-ahead 

forecast along all studied yield curves. Moreover, the three factor model developed by Nelson & 

Siegel proves to be the best choice for out-of-sample forecasting. Finally, the success of the 

cross variable interaction strongly depends on the selected yield curve.    
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1. Introduction 

The term structure of interest rates defines the relationship between the interest rates and the time to 

maturity. Consequently, it has inspired practitioners and researchers to find different approaches to 

forecast it, in order to achieve an investment gain. Dolan (1999) classified the yield curve models in 

three different types: i) Stochastic and arbitrage free, ii) Principal Components, and iii) Fundamental. 

The most successful models are the ones that focus in latent factors that determined the term structure. 

Litterman & Scheinkman (1991) established that the dynamic of the term structure of interest rates can 

be depicted with three principal components3.  

Dolan (1999) was the first to link these principal components to the functional form of the term 

structure given by Nelson & Siegel (1987) (hereafter NS), by determining that the three factors resemble 

the level, slope and curvature (or butterfly as describe by the author) of the yield curve.  Later on, 

Diebold and Li (2006) determined that the future dynamic of the term structure of interest rates could 

be described by using a statistical or parametric model that forecasted the factors, which are 

restructured into the yield curve with the NS model. Subsequent authors, such as De Pooter (2007), 

Cziráky (2007) or De Rezende & Ferreira (2011), studied the forecasting ability of other functional forms 

that depart from the NS model, like the Svensson model (1994), Bliss model (1997) or Björk & 

Christensen (1999). 

Almost all the literature that uses the Diebold & Li methodology to forecast the term structure of 

interest rates focuses exclusively on the yield curve of United States. Few authors, like Bolder (2006) or 

De Rezende & Ferreira (2011), evaluated the methodology in different markets. Therefore, one of the 

contributions of this paper is that it tests this methodology in Latin-American yield curves (Colombia, 

Mexico, Chile and Peru). Additionally, the paper also studies the ability to forecast the latent factors of 

the yield curve by using feedforward artificial neural network (ANN), that review each factor individually 

or that include the interaction between the state variables. These types of ANN are compared with the 

performance of an autoregressive and vector autoregressive models. The functional forms used to 

determine the factors to forecast are the NS model and the Svensson expansion (hereafter NSS). 

This paper is divided in six chapters. The first one is this introduction. The second presents the data of 

the yield curves of the analyzed countries. The third describes the modeling framework given by the NS 

and NSS models. The fourth explains the estimation methods used to forecast the latent factors of the 

yield curve. The fifth presents the main results of the different approaches and compares the root mean 

squared error (RMSE) of the resulting out-of-sample yield curves. Finally, the sixth makes some 

concluding remarks.          

2. Data 

As mentioned before, one of the main objectives of this document is to analyze Diebold & Li framework 

in the context of Latin American yield curves. Due to accessibility of information, the selected countries 

                                                           
3
 With a principal component analysis (PCA) one can find orthogonal factors that explain in a statistical sense the 

variance of the changes in interest rates. 



are Colombia, Mexico, Chile and Peru. The yield curve of United States is also analyzed to review the 

results of the ANN estimation model against others proposed in the literature.  

Figure 1: Yield Curves

 
Source: Bloomberg 
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When studying this framework, the literature presents different vertices that represent the zero-coupon 

yield curve accordingly to the liquidity conditions of the markets and the availability of information. For 

instance, De Rezende & Ferreira (2011) use vertices from 1 month up to 60 month for the yield curve of 

Brazil, whilst Fabozzi, Martellini & Priaulet (2005) use vertices from 3 months up to 30 years for the 

zero-coupon yield curve of United States and De Pooter (2007) uses vertices from 3 months up to 10 

years for the same yield curve. For comparative purposes the vertices chosen in this document are:  

0.25, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20 and 30 years. 

Figure 1 presents the historical yield curves for the selected countries. The availability of information 

varies depending on the country, from 77 months for Peru to 152 months for United States. Therefore, 

to ensure sufficient data to estimate the forecasting models, one and a half years are left to be used for 

the evaluation of the out-of-sample forecast. 

 

3. Modeling Framework 

The main goal of Nelson & Siegel (1987) was to extract the zero-coupon and forward interest rates 

curves from a collection of coupon bond prices to find a continuous functional form that describes the 

term structure of interest rates. They suggested the following form of instantaneous forward rates up to 

maturity   : 
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Likewise, the zero coupon curve at a particular point is given by: 
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This is the starting point for Diebold & Li (2006), by also using the research of Litterman & Scheinkman 

(1991); they concluded that the coefficients          represented the latent factors of the yield curve, 

level, slope and curvature. The parameter   , or     
 ⁄ , is fixed by the authors, consequently the 

equation is reduced to a linear combination of three functions with coefficients that represent the latent 

factors. By fitting the yield curve in a time period, the authors develop a time series for the level, slope 

and curvature, which they used to forecast the factors with an estimation method. Bolder (2006) 

explained that the main disadvantage of this approach is that it does not has a theoretical model 

foundation, as seen with least successful forecasting models such as theoretical affine term-structure 

models, which incorporate a notion of risk premia.   

Furthermore, other authors review the forecasting ability of supplementary yield curve functional forms 

that include more factors. For instance, Cziráky (2007) analyzed the inclusion of the Svensson fourth 



term in the NS equation, whilst De Pooter (2007) evaluated an adjusted version of the NSS model, the 

Bliss model and the model of Björk & Christensen. Additionally from the listed models, De Rezende & 

Ferreira (2011) proposed a five factor equation. Almost all the authors reported a better in-sample 

fitting with the enhanced NS models, considering that the extra factors provide more flexibility. 

Although, the models with a larger amount of factors do not necessary have to perform well out-of-

sample because of the risk of overfitting. In this document the NSS functional form is studied. 

The contribution of Svensson (1994) was to extend the NS model by including an additional term that 

allowed a second hump shape by including to additional parameters    and   . Therefore, the form of 

instantaneous forward rates and the zero coupon rates up to maturity    are given by: 
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These two parameters provide a better goodness-of-fit, given that the model incorporates a second 

curvature along the vertex scores. This document follows adjusted version given by De Pooter (2007), in 

order to avoid multicolinearity problems between the two curvature components, which may occurred 

during the estimation process. Therefore the zero coupon curve at a particular point is given by: 
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The parameter  , or the parameters    and    in the NSS model, defines the decaying shape of the 

factor loadings, as shown in figure 24. By determining the value of the decay parameter, one defines the 

weight of each of the latent factors. As presented by De Pooter (2007), Bolder (2006) or Dolan (1999) 

the level is the long-term component as it is the one constant throughout all the maturities. The 

investment results over long maturities are dominated by the change in the level of yields, considering 

that the slope and curvature effects are almost imperceptible. The slope is the short-term component as 

it starts with a high value but decays at an exponential rate given by  . The curvature is the medium-

term component it starts at a low value and increases for the medium term maturities but then decays 

to zero in the long-term maturities. The peak of this hump is reached in the value of  .  
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 The figure shows on the left side the factor loadings given by the NS model for a yield curve assuming a fixed 

value of             . On the right side it depicts the factor loadings given by the NSS model for a yield curve 
assuming a value of               and              .  



Figure 2: Factor Loadings 

 

Source: Author’s calculations 

Consequently a change in    creates a parallel shifts up or down, a positive value to    will lead to a 

steeping of the zero coupon curve, while a negative value will produce a flattening or a downward 

sloping yield curve. Positive values of    increase the curvature and negative values decrease the 

curvature. With the NSS model one can make the same analysis, as the three first factors are the same. 

The fourth factor resembles the third (right sided graph in figure 2) as it is a second hump in the term 

structure, although it is not related with the slope as it has an independent parameter   . Likewise, 

positive values of    increase the second curvature and negative values decrease this curvature. 

 
Figure 3: Historical values of   defined with a nonlinear optimization 

 

Source: Author’s calculations 



Considering that   is a nonlinear parameter and numerically unstable, almost all the authors fixed the 

value of  , Fabozzi, Martellini & Priaulet (2005) used a value of 3 years, and Diebold & Li (2006) fixed a 

value of 1.3684 years. Gilli, Große, & Schumann (2010) reported numerical difficulties when calibrating 

the model, particularly they established two problems. The first one is the optimization issue that results 

from a not convex problem with multiple local minima. The second one is a collinearity problem, as 

called by the authors, resulting from the highly correlated factor loadings depending on the value of  . 

Consequently the authors advised using differential evolution techniques5 in order to produce an 

accurate estimate of the parameters. This approach is tested in this document, but the results were very 

unstable having an adverse effect in the out of sample estimation process.  Figure 3 depicts the changes 

of   in the NS model accordingly to the result of the nonlinear optimization. While the parameter of US 

does not change abruptly throughout the time series, the selected values for the yield curves of 

Colombia, Mexico and Chile present unexpected jumps that negatively affect the estimation process for 

the forecast models.  

Therefore the value of   is fixed following the approach of De Rezende & Ferreira (2011), which 

determined the decay factor by choosing the value that minimizes the average of the Root Mean 

Squared Error (RMSE) computed for each period  , considering the actual yield curve and the estimates 

with NS. The optimal value is chosen from a set    {   
   ⁄   }

   

   
, where   defines the minimum 

value given for   in the estimation with differential evolution heuristic in all the observations   available, 

and    delineates the range of the possible values of  . The parameters   of the functional form are 

estimated by ordinary least squares. Consequently the value of   will be given by: 
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In the case of NSS the problem is enhanced to solve for    and   : 
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The resulting values are shown in Table 1. The value of   for United States in the NS model is consistent 

with the one selected by Diebold & Li. For the NS model, small values of   imply a fast exponential decay 

that gives more weight to the short term maturities, disregarding the middle and long term maturities. 

Whilst a large value of  , produces a slow decay that gives more relevance to the middle and long term 

                                                           
5
 Storn & Price (1997) describe differential evolution is a parallel direct search method which utilizes D-dimensional 

parameter vectors as a population for each generation G. The initial vector population is chosen randomly and 
should cover the entire parameter space. Differential evolution generates new parameter vectors by adding the 
weighted difference between two population vectors to a third vector. 



maturities. Likewise, the curvature factor gives more weight to the vertices around the value of  . 

Consequently, small values indicate that the historical yield curve has been more flat, while large value 

of  , represent steeper historical yield curves. Thus the values shown in Table 1, clearly represent the 

data depicted in Figure 1. Where Chile present a flat yield curves in most of the cases, whilst Colombia 

and Mexico have steeper yield curves.    

Table 1: Parameter   optimal values 

Country COLOMBIA MEXICO CHILE PERU US 

Nelson & Siegel τ1 3.56 4.70 0.62 2.27 1.48 

Nelson & Siegel - Svensson 
τ1 2.80 4.92 2.44 6.69 3.97 

τ2 2.24 4.36 0.91 6.13 3.39 

 Source: Author’s calculations 

 

Once a fixed value of   has been selected, the NS or NSS equation is turned into a linear combination of 

the  parameters, one can estimate the coefficients with an ordinary least squares model.  
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Table 2 presents the statistics of the resulting coefficients   (level, slope and curvature(s)). The mean of 

the historical value of the level shows a higher historical rate for the Latin American countries compared 

to the rate of United States. The difference between the two values represents the default risk premium 

of the emerging countries; this is higher for Colombia, Mexico and Peru, whilst for Chile the difference is 

of just 100 basis points.  

Moreover, the NS model and the NSS model present similar values for the mean of the level and the 

slope in all the markets, but the mean value of the curvature in the NS model is not always similar to any 

of the mean values of the curvatures shown in the NSS model. In the NS model the curvature is also the 

factor that presents the greater standard deviation for all the countries, in the NSS model the first 

curvature is the most unstable coefficient. Furthermore, the kurtosis and skewness of the time series of 

the latent factors are distant from a normal distribution assumption. Regarding the time series 

autocorrelations, the first sample autocorrelations are high, close to 1, for all the time series. The sixth 

sample autocorrelations are lower than the first sample autocorrelations, but higher than 0.5 for all the 

time series. The twelfth sample autocorrelations are low, closely to 0 (with the exception of US), 

indicating the absence of a seasonal yearly effect. 

 

 



Table 2: Statistics of the latent factors of the yield curve 

  

Nelson & Siegel Nelson & Siegel - Svensson 

Level 
(β1) 

Slope 
(β2) 

Curvature 
(β3) 

Level 
(β1) 

Slope 
(β2) 

Curvature 
1 (β3) 

Curvature 
2 (β4) 

C
O

LO
M

B
IA

 

Mean 9.086% -3.256% 5.111% 9.159% -3.072% 5.939% -1.655% 

Standard 
Deviation 

1.279% 1.926% 2.666% 1.271% 1.550% 4.686% 2.857% 

Skewness 0.677 -0.082 0.518 0.555 -0.525 0.863 -0.782 

Kurtosis -0.256 -1.433 -0.796 -0.543 -0.441 -0.316 -0.134 

Minimum Value 7.217% -6.727% 0.552% 7.263% -6.909% 0.053% -9.499% 

Maximum Value 12.333% -0.349% 10.669% 11.970% -0.205% 17.423% 2.393% 

1st sample 
Autocorrelation 

0.912 0.956 0.869 0.914 0.937 0.927 0.929 

6th sample 
Autocorrelation 

0.659 0.782 0.256 0.616 0.639 0.627 0.638 

12th sample 
Autocorrelation 

0.238 0.398 0.180 0.241 0.426 0.245 0.147 

M
EX

IC
O

 

Mean 9.802% -3.409% 0.527% 9.802% -3.411% 0.636% 0.036% 

Standard 
Deviation 

1.331% 2.233% 3.610% 1.362% 2.392% 4.662% 1.681% 

Skewness 0.147 -0.246 -0.316 0.102 -0.425 0.168 0.085 

Kurtosis -0.906 -1.294 0.043 -1.082 -1.197 -0.117 0.079 

Minimum Value 7.472% -7.852% -7.877% 7.477% -8.094% -9.545% -4.370% 

Maximum Value 12.612% -0.200% 8.966% 12.697% 0.140% 12.511% 5.150% 

1st sample 
Autocorrelation 

0.886 0.965 0.942 0.869 0.956 0.891 0.765 

6th sample 
Autocorrelation 

0.553 0.812 0.712 0.524 0.829 0.704 0.217 

12th sample 
Autocorrelation 

0.111 0.546 0.411 0.090 0.627 0.497 0.190 

C
H

IL
E 

Mean 6.388% -1.942% -1.821% 6.297% -1.979% 1.607% -0.041% 

Standard 
Deviation 

0.734% 2.399% 3.332% 0.673% 2.211% 2.295% 1.909% 

Skewness 0.068 -0.892 -1.413 0.245 -0.773 0.938 -0.808 

Kurtosis -0.381 0.092 0.928 0.172 -0.073 0.647 0.496 

Minimum Value 4.706% -7.761% -11.322% 4.906% -7.213% -2.896% -5.368% 

Maximum Value 8.042% 2.206% 2.492% 8.213% 2.458% 7.277% 4.071% 

1st sample 
Autocorrelation 

0.867 0.969 0.933 0.847 0.963 0.948 0.876 

6th sample 
Autocorrelation 

0.239 0.671 0.610 0.189 0.658 0.636 0.454 

12th sample 
Autocorrelation 

0.026 0.104 0.124 -0.045 0.138 0.013 -0.106 



P
ER

U
 

Mean 7.852% -3.595% -2.543% 7.048% -2.789% 5.477% -1.476% 

Standard 
Deviation 

0.772% 1.375% 2.374% 1.444% 1.068% 7.150% 3.164% 

Skewness 0.153 0.046 0.239 -0.603 0.149 0.878 -0.339 

Kurtosis 0.197 -0.754 -0.970 2.289 0.471 0.400 -0.417 

Minimum Value 6.301% -6.224% -6.134% 2.066% -5.107% -6.923% -8.776% 

Maximum Value 10.174% -0.563% 3.281% 11.568% 0.647% 26.297% 6.453% 

1st sample 
Autocorrelation 

0.779 0.920 0.888 0.846 0.722 0.885 0.869 

6th sample 
Autocorrelation 

0.283 0.582 0.547 0.339 0.373 0.520 0.529 

12th sample 
Autocorrelation 

-0.099 0.262 0.511 -0.295 0.086 0.094 0.260 

U
S 

Mean 5.306% -2.935% -3.824% 5.336% -3.076% 1.831% -1.358% 

Standard 
Deviation 

0.801% 2.031% 2.803% 0.637% 2.016% 2.292% 1.400% 

Skewness -0.871 0.461 0.171 -0.589 0.604 0.220 0.246 

Kurtosis 0.665 -1.233 -0.811 -0.015 -1.180 -0.586 -0.649 

Minimum Value 2.904% -5.763% -9.323% 3.307% -5.566% -2.561% -4.844% 

Maximum Value 6.580% 0.787% 2.778% 6.493% 0.788% 9.432% 2.073% 

1st sample 
Autocorrelation 

0.925 0.978 0.940 0.881 0.980 0.867 0.862 

6th sample 
Autocorrelation 

0.684 0.843 0.758 0.593 0.879 0.562 0.547 

12th sample 
Autocorrelation 

0.480 0.525 0.580 0.451 0.599 0.351 0.367 

Source: Author’s calculations 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure 4: Time series of Nelson-Siegel factors 

 
Source: Author’s calculations 

 

Figure 4 depicts the time series of the latent factors of the countries with the NS model following the 

fixed values of  , as shown in table 1. As expected, from the information in table 2, the curvature is the 

most unstable factor in all the yield curves. Furthermore, the level is the most constant factor, although 

it does not seems to be stationary. A Dickey-Füller test of stationarity, indicate that all the time series 

have a unit root. After differentiating the series once, all the factors appear to be stationary. Figure 5 

shows the time series of the latent factors of the NSS model, again the first curvature is the factors that 

is more unstable throughout the sample period. As in the NS model, all the factors are an  ( ) process. 

Some differentiated time series show little autocorrelation, indicating that the autoregressive models 

may not have good predictive power. Although, other differentiated series present higher 



autocorrelation that allow   ( ) models to be fitted to the data. Consequently, the most adverse effect 

may occur in the out-sample performance of the vector autoregressive models, because they would 

include some time series behaving as a random walk that can alter the predictions. 

      

Figure 5: Time series of Nelson-Siegel factors 

 

Source: Author’s calculations 

 

 



4. Forecasting Methods 

By fixing the value of the parameters  , the resulting yield curve in period   with the NS or NSS model 

can be described as a linear combination of the latent factors of the yield curve in the following 

representation: 

                                                                                              

where    is a vector that contains every chosen vertex of the yield curve,    represents the matrix of the 

factor loadings for all the selected vertices,    is the vector of coefficient of the factors and    is a vector 

of error with a normal standard distribution.      

Consequently one can determine the future yield curve forecasting the value of the vector   . The 

forecasting power of two approaches is tested in this document: parametric models and ANN. Both 

methods are tested for each factor individually and taking into account the interaction of all the factors. 

 

4.1. Parametric Models 

Following Diebold & Li (2006) the parametric models chosen to forecast the level, slope and curvature(s) 

are an   ( ) and a    ( ). With the   ( ) one model is estimated for each factor, resulting in three 

for the NS functional form and four for the NSS functional form. 

 ̂          ̂                                                                              

The historical information of each factor, excluding the data left for the forecast evaluation, is used to 

estimate the parameters    and   ;      represents the residual.  

Alternatively, the    ( ) groups all the factors to take into account the interaction between all the 

states variables.       

                                                                                      

Diebold & Li (2006) reported inferior results with the    ( ) forecasts compared to the ones given by 

the   ( ). They give two reasons for this: i) the first one explains that this conclusion is consistent with 

the observed tendency in macroeconomics, where unrestricted      tend to produce poor forecasts of 

economic variables even when there is important cross-variable interaction, this is a result of the in-

sample over-fitting that occurs for the numerous parameters that need to be estimated. ii) The second 

one is that they found that the factors are not highly correlated; therefore the multivariate model result 

in as a set of univariate models. These reasons also explain why the authors avoided functional forms 

with more than three latent factors. The authors also reported outstanding results for the   ( ) model 

in a twelve-month-ahead forecast, whilst the results at one month horizon forecast did not show a 

significant difference between the RMSE of the model and the one of the random walk. 



Likewise, Bolder (2006) outlined that the forecasts of the NS model outperform exponential-spline and 

Fourier series models on a six month horizon, but the one and three-month ahead forecasts of the 

random walk always exceeded the other methodologies. Moreover, De Rezende & Ferreira (2011) 

studied the effect of a quantile autoregression approach with which they conclude that the Bliss 

functional form delivered the best results in a one month horizon, whilst the NSS-QAR model is the best 

option for the three months horizon. When the authors tested a five factor functional form it performs 

poorly, due to sample over-fitting. Furthermore, De Pooter (2007) established that more flexible 

models, as the NSS, improve the out-of-sample predictability, his adjusted version of the NSS model with 

an    ( ) parametric model outperformed other choices in the six and twelve month horizons. 

Additionally, Cziráky (2007) concluded that the NS and the NSS models had poor forecasting 

performance around the points of non-parallel shifts. 

 

4.2. Neural Networks 

Artificial neural networks are an analogy of the organization of neurons in the human brain. Thus, are 

formed by incoming nodes or neurons, which are the equivalent of the stimuli received by the human 

brain. These are followed by hidden or intermediate nodes that process the information, which 

communicate with an output layer that produce the solution or response to the incoming information. 

As with the human brain, the ANN learns to perform its task by trial and error. 

In constructing forecasts of a random variable ( ̂) ANN uses the information of past observations as 

follows: 

 ̂   (                  )                                                          

where   is the function that determines the structure and connections of the nodes and their respective 

weights  . 

With ANN one can identify the non-linearity of the time series, as this tool can approximate almost 

every conceivable function, consequently ANN can be viewed as a notable option for forecasting the 

latent factors of the yield curves. Two different approaches are analyzed, the first one considers each 

time series separately, whilst the second analyzed all the factors that describe the yield curve.  

In the literature, the opinions of the advantages of ANN over parametric models are divided, though 

more biased towards models that consider nonlinear components. The comparison made by Hill, 

O'Connor, & Remus (1996) concluded that ANN significantly exceeds the usual statistical models in 

assessing quarterly and monthly data. Other authors like Deo & Sridhar (1999)6, Abdel-Aal (2008)7, Zou, 

                                                           
6
 The main objective of the model developed by the authors is to forecast the height of the waves on the coast 

Yaman (India). 
7
 The author sought the best tool to forecast the demand for energy. 



Xia Yang, & Wang (2007)8, and Misas, López & Querubín (2002)9 obtained favorable results for ANN that 

establish their superiority over linear models. 

However, Faraway & Chatfield (1998) criticized the adjustment of ANN to some of the univariate series 

used in the article “Time series Forecasting analysis and control” of Box, Jenkins & Reinsel, supporting 

the use of ARIMA models. Similarly Callen, Kwan, Yip, & Yuan (1996) reported that the linear models 

outperformed the ANN, when forecasting financial returns of the shares of the New York Stock 

Exchange.  

According to McNelis (2005) a linear model may be a very imprecise approximation to the real world, 

but it gives very easy, quick, and exact solutions. In contrast, the ANN produces a precise approximation 

capturing nonlinear behavior, but it does not have exact, easy-to-obtain solutions. Furthermore, 

Hamzacebi, Akay, & Kutay (2009), when analyzing different series, concluded that the best tool for 

forecasting is heavily dependent on the analyzed time series. 

The ANN developed in this document are feed-forward networks, which defines an organization where 

no node gives information to any of its predecessors. Therefore, the   lags will be in charge of activating 

the   hidden nodes ( ) according to a previously determined activation function ( ). These in turn 

activate the output layer nodes ( ) with another function ( ) to produce a result. Mathematically the 

salient nodes are modeled according to the following equation: 

    (   ∑  

 

   

 (    ∑     

 

   

))                                                  

The inclusion of each outgoing node requires      additional parameters, given the hidden nodes. 

Therefore more outputs require more network nodes according to settings in the intermediate layer, 

without being affected by the neurons in the input layer. Furthermore, according to Kuan & Liu (1995) 

functions   and   can be chosen arbitrarily, although it is suggested a bounded   function. Most of the 

literature recommends a sigmoidal logistic function: 

 ( )  
 

     
                                                                         

Once one has defined the network structure, the next step is the learning process of the ANN; this 

process is done by means of a minimization problem. 

The process minimizes the sum of squared errors to find the optimal weights of the nodes in the middle 

and output layer: 

                                                           
8
 The authors conducted a comparison of ARIMA models and ANN while forecasting the price of wheat in the 

Chinese market. 
9
 The authors used models to forecast the movements of the inflation in Colombia. 
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In the previous equation   is a matrix formed by the vectors of the weights of the hidden and the 

output layers,   is the loss function given by the sum of squared errors,   is the number of observations 

and (  ̂) is given by the structure defined in equation     . Given that   ( ) is a nonlinear function, 

iterative processes must be performed from point    to find the global minimum. Generally this search 

is done by means of a base gradient, where    ( ) and     ( ) are updated with different values 

of  , until reaching the minimum value of  . The more applied procedure, backpropagation, 

establishes that that the movement direction from the initial weight is given by the gradient    and the 

learning rate  : 

(     )                                                                             

An important caveat that should be noted is that the learning process10 is not always the absolute best 

as it can stop at a local optimum. To improve the search of the global optimum is usually suggested the 

inclusion of a momentum that ensures that the learning rate facilitates the convergence of the weights. 

Although one must consider that a bad choice of these parameters may cause over-fitting problems. 

Construction of the Neural Networks: 

For the construction of the ANN this document follows the steps given by Kaastra & Boyd (1996): i) 

Variables selection; ii) Data Collection; iii) Data preprocessing; iv) Training, testing and validation sets; v) 

Neural networks paradigms; vi) Evaluation criteria; vii) Neural Network Training; viii) Implementation.  

The selected variables in the neural networks constructed in this paper are given by number of lags that 

determined the behavior of the network. Considering that two approaches are used, the forecasts are 

explained by the past values of the same factor or/and the past values of the complementary factors.   

The selection process is explained in detail in the section that defines the number of layers and nodes. 

Moreover, the second step was explained in the second section of this article. For the third step, the 

data preprocessing is performed by normalizing the time series, in order to establish a range between -1 

and 1. This will ensure a faster training, due to the avoidance of very high or very low values that 

difficult the convergence to the global optimum. 

The fourth step defines how to divide the data to ensure the network learning. 60% of the information is 

used in the training, whilst 20% is used to validate the forecasts of the network. The training is given if 

the sum squared error of the validation data is reduced. The remaining 20% is used to test the 

effectiveness of forecasts with data that have never been used in the learning process. 

                                                           
10

 Other authors mention other forms of training. On the one hand McNelis (2005) suggests a stochastic search 
with genetic algorithms or simulated annealing. On the other hand Deo Naidu & Sridhar (1999) mentioned a 
cascade correlation algorithm. It should be noted that these methods are meta-heuristics that do not guarantee a 
global optimum. 



The fifth step is one of the most important and yet the most ambiguous, considering the different points 

of view, either depending on the type of network or the time series used. At this stage one must define 

the structural form: 

 Input Layer: One must ensure that the number of nodes corresponds to the number of lags that 

define the future observations. The number of units is defined by evaluating different intervals 

to find the one that provided a better evaluation criterion. The largest lag window considered 

for all the time series is the first to the twelfth. 

 Hidden layers: Kaastra & Boyd (1996) showed that more than two middle layers produced 

unsatisfactory results. This paper uses only one hidden layer, as is proved empirically that an 

additional layer gave no additional benefits. Therefore the relevant parameter in this case is the 

number of nodes. Some authors mentioned that twice the incoming nodes plus one or five 

achieved adequate accuracy in the model, see Coakley & Brown (2000) or Figueiredo, Hall 

Barbosa, Da Cruz, Vellasco, Pacheco, & Contreras (2007). But Hamzacebi, Akay, & Kutay, (2009) 

emphasized that a significant magnitude of nodes leads to inadequate results in the 

optimization. Likewise, a large number of hidden units increase the probability that the 

parameters converge to a local optimum. Therefore this document follows Misas, López & 

Querubín (2002) approach, where the number of nodes is selected by iterating between 

different values, not exceeding the double of the maximum number of outgoing nodes.  

 Output layer: This layer produces the forecasting results, therefore is closely related to the 

forecast horizon. Consequently, the number of nodes is defined by the forecasted periods. 

Once the structural form of the neural network is defined one must determine the evaluation criteria 

that establish the accuracy of the forecasts and subsequently the best neural network for the time 

series. The most used measures are MAPE (mean absolute percentage error) and RMSE (root mean 

squared error). This paper follows the suggestion McNelis (2005), to use the Hannan-Quinn information 

criterion, which penalizes the model with more parameters ( ) in a more strictly way than AIC, but not 

as severely as with Schwartz criteria. 

     {  (∑
(    ̂ )

 

 

 

   

)}  
    {  ( )} 

 
                                         

The criteria used to compare the forecasts of the term structure of interest rates, given by the different 

methodologies is RMSE. 

The seventh step defines the training process of the neural network. This document defines the 

following conditions: 

 A sigmoidal logistic function that describes the nonlinear relationship between the input layer 

and the hidden layer. And a linear function that relates the intermediate layer and the output 

layer. 

 A backpropagation methodology for the learning process. 

  To prevent convergence to a local optimum a momentum is added in the learning algorithm. 



 The initialization of the weights is given by the Nguyen-Widrow algorithm, where the weights 

are defined in an equitable manner to the entire space of the next layer. This technique main 

benefit is that it uses the information of almost all nodes in the layer and ensures faster 

training. 

 As for the stopping criteria during the training, the following conditions should be reached: 

 1000 iterations. 

 The sum of squared errors reaches a value of 1.00E-05. 

 The magnitude of the gradient is less than 1.00E-10. 

 The sum of quadratic errors of the training data is lower than the sum of quadratic 

errors of the validation data. 

Finally implementation techniques are defined. As previously mentioned, several networks are 

constructed, for each time series and for each yield curve. The variable values are the incoming and 

hidden nodes. Therefore, a comparison between networks is made using the Hannan-Quinn information 

criterion, considering the forecasts of the in-sample data; this is done to choose the best network with 

which forecasts of the unused data are made. Another aspect to be considered is that neural networks 

with the same structure can produce different results because a heuristics is used in the training 

process. Therefore in this paper the parameters of the best neural network are estimated several times, 

and the chosen value is the average of 1000 simulations. 

Table 3 presents the number of nodes in the input and hidden layers, given by the iterative process 

mentioned above. In most cases, the ANN of the whole set of factors (Set) requires more input nodes, or 

time series lags, than a neural network of an individual factor. The minimum value of nodes in an input 

layer is two, and the maximum value is twelve. In the hidden layer the lowest value is two, whilst the 

highest value is twenty. It is important to note that the output layer contains twelve nodes in all the 

constructed neural networks. 

Table 3: Resulting nodes in the input and hidden layers 

Country Layer 
Nelson & Siegel Nelson & Siegel - Svensson 

Level Slope Curvature Set Level Slope Curvature 1 Curvature 2 Set 

Colombia 
Input 8 12 6 11 8 8 11 11 4 

Hidden 4 5 14 19 3 16 20 2 17 

Mexico 
Input 10 4 11 11 9 5 9 12 12 

Hidden 4 12 13 20 13 9 13 9 12 

Chile 
Input 9 10 6 11 12 6 8 7 12 

Hidden 17 15 5 20 18 20 9 6 16 

Peru 
Input 11 5 4 10 9 8 12 8 10 

Hidden 11 14 18 20 15 19 4 4 18 

US 
Input 8 7 11 11 2 12 11 10 5 

Hidden 8 11 15 4 16 10 15 7 18 
Source: Author’s calculations 



5. Results 

In this section the forecasting results of the entire zero-coupon curve are shown, in order to review the 

describing dynamics of the whole term structure of interest rates and not to focus in particular vertices. 

Two functional form of the term structure are considered: i) the NS model which defines that the level, 

the slope and the curvature are the factors that determine the yield curve; and ii) the NSS model, which 

form if equal to the NS model but enhanced with a fourth factor that consists of a second curvature. 

Additionally, four different forecasting methodologies are used: i)   ( ) models for each individual 

factor; ii)    ( ) model that forecasts all factors to take into account their interaction; iii)Neural 

networks that forecast each factor individually (        ); and iv)Neural Networks that forecast all the 

factors at the same time (       ). It is also important to note that the forecast of the parametric 

models require an iterative process to forecast higher horizons than one month, whilst the ANN 

forecasts the selected horizon in one trial, avoiding the sum of errors that can result in a recursively 

process.  To check the forecasting performance of the models they are compared with the alternative of 

forecasting with the current value (random walk-   ), consequently each vertex   on the yield curve in 

time   will be given by its value at time    :  ̂          .     

Considering the short amount of data in some of the selected countries only a forecast up to six months 

is studied, by leaving the last one and a half year of each yield curve data for out-of-sample evaluation. 

The standard forecast error evaluation that is in in this document is the Root Mean Squared Error 

(RMSE), by averaging the RMSE of each vertex on the zero-coupon curves. 

Table 4 presents the standard deviation of the RMSE disaggregated by the forecasting method, the 

countries and forecasting horizons. The results are diverse for every country. In Colombia the    

         forecasts present the lowest variation in four of the studied forecasting horizons, as it also 

happens in the case of Peru.  Alternatively, in Mexico the             method present the smallest 

standard deviation in all time horizons with the exception of one month, where the              

varies the least. In Chile and the US there is no particular forecasting tool that stands out for having the 

smallest variation in all the forecasting horizons, but is notable that the    option has not the 

minimum standard deviation in any of the forecasting horizons.    

 

Table 4: Standard Deviation of the RMSE of the different methodologies in the analyzed countries 

    Nelson & Siegel Nelson & Siegel - Svensson 

RW 

  

Forecasting 
 Horizon 

ANN Ind. ANN All AR(1) VAR(1) ANN Ind. ANN All AR(1) VAR(1) 

C
O

LO
M

B
IA

 

1 Month 0.056% 0.573% 0.133% 0.150% 0.062% 0.335% 0.120% 0.130% 0.131% 

2 Month 0.068% 0.627% 0.270% 0.141% 0.256% 0.388% 0.261% 0.190% 0.141% 

3 Month 0.056% 0.729% 0.288% 0.225% 0.199% 0.420% 0.284% 0.257% 0.139% 

4 Month 0.196% 0.797% 0.282% 0.248% 0.201% 0.405% 0.280% 0.267% 0.192% 

5 Month 0.221% 0.806% 0.270% 0.249% 0.189% 0.403% 0.269% 0.257% 0.209% 

6 Month 0.189% 0.818% 0.281% 0.262% 0.210% 0.413% 0.280% 0.262% 0.255% 



M
EX

IC
O

 

Forecasting 
 Horizon 

ANN Ind. ANN All AR(1) VAR(1) ANN Ind. ANN All AR(1) VAR(1) RW 

1 Month 0.042% 0.112% 0.132% 0.365% 0.109% 0.090% 0.135% 0.205% 0.207% 

2 Month 0.147% 0.113% 0.186% 0.142% 0.237% 0.112% 0.215% 0.144% 0.247% 

3 Month 0.234% 0.120% 0.178% 0.240% 0.192% 0.099% 0.214% 0.231% 0.250% 

4 Month 0.266% 0.136% 0.178% 0.260% 0.242% 0.088% 0.224% 0.251% 0.290% 

5 Month 0.368% 0.144% 0.143% 0.242% 0.382% 0.099% 0.382% 0.236% 0.371% 

6 Month 0.477% 0.198% 0.148% 0.255% 0.394% 0.111% 0.252% 0.250% 0.411% 

C
H

IL
E 

Forecasting 
 Horizon 

ANN Ind. ANN All AR(1) VAR(1) ANN Ind. ANN All AR(1) VAR(1) RW 

1 Month 0.085% 0.135% 0.106% 0.279% 0.069% 0.247% 0.107% 0.292% 0.293% 

2 Month 0.143% 0.247% 0.105% 0.074% 0.125% 0.239% 0.107% 0.073% 0.240% 

3 Month 0.107% 0.321% 0.123% 0.183% 0.250% 0.213% 0.146% 0.191% 0.251% 

4 Month 0.170% 0.400% 0.161% 0.233% 0.300% 0.202% 0.190% 0.237% 0.250% 

5 Month 0.205% 0.457% 0.196% 0.257% 0.357% 0.219% 0.220% 0.258% 0.383% 

6 Month 0.193% 0.218% 0.175% 0.232% 0.395% 0.154% 0.194% 0.233% 0.290% 

P
ER

U
 

Forecasting 
 Horizon 

ANN Ind. ANN All AR(1) VAR(1) ANN Ind. ANN All AR(1) VAR(1) RW 

1 Month 0.059% 0.258% 0.105% 0.090% 0.343% 0.367% 0.102% 0.173% 0.173% 

2 Month 0.063% 0.366% 0.284% 0.297% 0.429% 0.315% 0.282% 0.300% 0.201% 

3 Month 0.153% 0.280% 0.301% 0.304% 0.596% 0.410% 0.292% 0.307% 0.206% 

4 Month 0.205% 0.424% 0.304% 0.293% 0.597% 0.338% 0.292% 0.297% 0.227% 

5 Month 0.274% 0.328% 0.288% 0.267% 0.382% 0.365% 0.272% 0.271% 0.249% 

6 Month 0.228% 0.295% 0.260% 0.227% 0.588% 0.323% 0.244% 0.231% 0.211% 

U
S 

Forecasting 
 Horizon 

ANN Ind. ANN All AR(1) VAR(1) ANN Ind. ANN All AR(1) VAR(1) RW 

1 Month 0.109% 0.038% 0.100% 0.164% 0.154% 0.156% 0.117% 0.276% 0.413% 

2 Month 0.195% 0.085% 0.172% 0.158% 0.257% 0.178% 0.181% 0.137% 0.266% 

3 Month 0.266% 0.123% 0.170% 0.112% 0.373% 0.159% 0.180% 0.108% 0.305% 

4 Month 0.279% 0.136% 0.167% 0.097% 0.401% 0.125% 0.178% 0.102% 0.331% 

5 Month 0.376% 0.132% 0.175% 0.109% 0.391% 0.109% 0.188% 0.116% 0.351% 

6 Month 0.480% 0.088% 0.187% 0.122% 0.450% 0.151% 0.202% 0.121% 0.271% 
Source: Author’s calculations 

Table 5 shows the mean RMSE broken down by the forecasting options, the studied counties and the 

forecasting horizons tested. The shaded frames indicate the smallest RMSE, the best forecasting option. 

Further, if the numbers are bold it represents that the null hypothesis of the Diebold–Mariano test is 

rejected with a 90% confidence. The null hypothesis is that the factor model forecast with the minimum 

measure RMSE and the random walk RMSE are the same.  

 



In the case of Colombia the             forecast model stands out in the short-term horizons (from 

one to three months), but only the one-month-ahead prediction is significantly different from the result 

of the random walk. The    produces the best forecasting results in the four and six months horizons, 

discrediting the functionality of the tested models. On the contrary, in the five months horizon the 

             methodology produces a significantly better forecast than the other options. The 

A       and the    ( ) are not reliable forecasting methodologies, indicating that the numerous 

parameters may generate in-sample over-fitting.   

 

Concerning the forecasting results of the term structure of the interest rates in Mexico the    

         methodology has a significantly improved performance than any other option in the one 

month prediction, excepting the      ( ) which has a similar RMSE. Unlike with the yield curve of 

Colombia, the            and the             forecasting results improve radically.  The two-

months-ahead RMSE is superior with the           , whilst the results at a four, five and six months 

horizons are better with the             at the ten percent level.  

 

As for the results of the zero-coupon curve of Chile, the             methodology delivers the 

lowest RMSE for the short-term horizons (one to three months) and for the five months horizon. In the 

short-term horizons the mentioned tool exceeds the other option according to the Diebold–Mariano 

test. The             presents the best six-months-ahead forecasting result, but its RMSE is not 

significantly different from that of the   . Moreover, in the four-months-ahead forecasting result 

neither forecasting methodology emerges as the best option. 

 

The             is once again the forecasting methodology with the lowest RMSE for the short-term 

horizons in the results of the yield curve of Peru. This ranks it as the best model one, two and three 

months ahead at the ten percent level, although its RMSE in a time horizon of one month is very similar 

to that one of the      ( ). In the four months horizon             also shows the lowest 

RMSE, but it is not significantly different from the random walk option. Likewise, in the forecasts five 

and six months ahead there is not a methodology that exceeds the    with a significant value. 

 

Finally in the yield curve of the US, there are outstanding results with the               

  ( )       ( ) and the        ( ); but the              outperforms all of them in the 

one-month-ahead forecast. However, over all the forecasting horizons the            is the best 

options, as it has the lowest RMSE for the forecasting horizons from two months to six months.  In the 

two, five and six months ahead forecast it is significantly different from the random walk at a 90% 

confidence. 

 

 

 

 

 

 

 



Table 5: Mean RMSE of the different methodologies in the analyzed countries 

    Nelson & Siegel Nelson & Siegel - Svensson 

RW 

  

Forecasting 
 Horizon 

ANN Ind. ANN All AR(1) VAR(1) ANN Ind. ANN All AR(1) VAR(1) 

C
O

LO
M

B
IA

 

1 Month 0.214% 1.399% 0.349% 0.748% 0.274% 1.061% 0.312% 0.277% 0.277% 

2 Month 0.281% 1.570% 0.585% 1.105% 0.483% 1.196% 0.516% 1.442% 0.307% 

3 Month 0.320% 1.717% 0.809% 1.467% 0.529% 1.413% 0.704% 1.695% 0.343% 

4 Month 0.543% 1.849% 1.031% 1.591% 0.506% 1.546% 0.903% 1.739% 0.381% 

5 Month 0.740% 1.956% 1.233% 1.663% 0.394% 1.714% 1.091% 1.748% 0.421% 

6 Month 0.853% 1.937% 1.396% 1.708% 0.446% 1.791% 1.246% 1.744% 0.434% 

M
EX

IC
O

 

Forecasting 
 Horizon 

ANN Ind. ANN All AR(1) VAR(1) ANN Ind. ANN All AR(1) VAR(1) RW 

1 Month 0.264% 0.377% 0.278% 1.441% 0.275% 0.474% 0.281% 0.434% 0.434% 

2 Month 0.490% 0.382% 0.447% 1.503% 0.395% 0.455% 0.417% 1.507% 0.498% 

3 Month 0.776% 0.387% 0.495% 2.229% 0.408% 0.422% 0.463% 2.105% 0.485% 

4 Month 0.912% 0.436% 0.503% 2.585% 0.609% 0.414% 0.489% 2.398% 0.524% 

5 Month 1.020% 0.430% 0.487% 2.758% 1.220% 0.411% 1.220% 2.561% 0.607% 

6 Month 1.161% 0.448% 0.504% 2.819% 1.355% 0.448% 0.554% 2.639% 0.639% 

C
H

IL
E 

Forecasting 
 Horizon 

ANN Ind. ANN All AR(1) VAR(1) ANN Ind. ANN All AR(1) VAR(1) RW 

1 Month 0.146% 0.421% 0.255% 1.447% 0.214% 0.553% 0.263% 0.415% 0.416% 

2 Month 0.253% 0.593% 0.339% 0.536% 0.352% 0.514% 0.364% 0.536% 0.430% 

3 Month 0.385% 0.679% 0.399% 0.681% 0.561% 0.489% 0.444% 0.695% 0.416% 

4 Month 0.543% 0.663% 0.454% 0.767% 0.666% 0.484% 0.515% 0.779% 0.426% 

5 Month 0.408% 0.578% 0.494% 0.773% 0.719% 0.455% 0.569% 0.777% 0.413% 

6 Month 0.410% 0.543% 0.500% 0.720% 0.686% 0.398% 0.583% 0.718% 0.410% 

P
ER

U
 

Forecasting 
 Horizon 

ANN Ind. ANN All AR(1) VAR(1) ANN Ind. ANN All AR(1) VAR(1) RW 

1 Month 0.235% 0.491% 0.271% 0.672% 0.376% 1.247% 0.285% 0.404% 0.404% 

2 Month 0.233% 0.559% 0.554% 1.810% 0.702% 1.443% 0.609% 1.856% 0.454% 

3 Month 0.446% 0.537% 0.647% 2.147% 0.969% 1.418% 0.707% 2.197% 0.519% 

4 Month 0.521% 0.630% 0.741% 2.154% 1.052% 1.484% 0.798% 2.197% 0.565% 

5 Month 0.979% 0.594% 0.841% 2.085% 0.748% 1.589% 0.890% 2.116% 0.649% 

6 Month 1.116% 0.800% 0.939% 2.012% 0.959% 1.660% 0.975% 2.029% 0.716% 

U
S 

Forecasting 
 Horizon 

ANN Ind. ANN All AR(1) VAR(1) ANN Ind. ANN All AR(1) VAR(1) RW 

1 Month 0.757% 0.308% 0.319% 1.826% 0.307% 1.954% 0.324% 0.345% 0.563% 

2 Month 1.239% 0.364% 0.673% 3.080% 0.663% 1.954% 0.656% 3.119% 0.414% 



3 Month 1.539% 0.399% 0.830% 3.711% 0.790% 1.993% 0.793% 3.679% 0.447% 

4 Month 1.743% 0.424% 0.977% 3.985% 1.044% 2.016% 0.919% 3.907% 0.480% 

5 Month 2.115% 0.349% 1.101% 4.075% 1.191% 2.037% 1.020% 3.974% 0.485% 

6 Month 2.203% 0.320% 1.207% 4.074% 1.356% 2.053% 1.104% 3.965% 0.511% 
Source: Author’s calculations 

 

6. Concluding Remarks 

In this paper the out-of-sample forecasting performance of several Latin-American yield curves, as well 

as the United States yield curve are tested using the Diebold & Li process. This is done by establishing a 

Nelson-Siegel specification and the Svensson enhancement. These functional forms were complemented 

with various forecasting methods, including parametric models and artificial neural networks.  

Overall in the one-month-ahead forecast, the neural networks showed the better out-of-sample 

performance in all the studied yield curves, by surpassing the results of the tested parametric models 

and being significantly different from the result of the random walk. Particularly the ANN show better 

results by forecasting each factor individually and then grouping them with a functional form. For the 

Latin American yield curves the best results are presented with the Nelson & Siegel model, whilst with 

the US is the Svensson enhancement that exceeds the other options. 

In other forecasting time horizons the results are not conclusive, since in some cases some on the neural 

networks outperform the parametric models, but in other cases the results do not exceed the random 

walk. The results are heavily dependent on the studied yield curve. On the one hand the yield curve of 

Colombia is the most difficult to forecast as only in two time horizons was possible to find a suitable 

forecasting model. On the other hand, the yield curves of Mexico and US are the ones where the 

forecasting models with neural networks showed the better result. Further, these yield curves are the 

ones with more historical data. In the case of the yield curves of Peru and Chile, the results of the paper 

show that there is forecastability in the short-term horizon (up to three months).  

Additionally in the analysis of the yield curve of Colombia, there are evident problems in the 

methodologies that require numerous parameter estimations, given the small cross variable interaction 

between the factors. Alternatively, in the case of Mexico and US some of the models with cross variable 

interaction presented the lowest RMSE. Moreover, the one month horizon is the one in which a 

forecasting methodology always outperformed the random walk option. In all the Latin-American yield 

curves the optimal forecasting methodology one month ahead are the neural networks that forecast the 

individually the factors of the Nelson & Siegel specification. Whilst in the US yield curve this horizon can 

be forecasted with neural networks and the Svensson specification.         

In conclusion, there is not enough evidence that proves that with neural networks a better forecast is 

always going to be accomplished. But neither there is any evidence that demonstrates that the neural 

networks cannot exceed parametric models and the random walk option. Thus, in a practical approach 

this tool is recommended as another feasible option to forecast yield curves. 



This research can be extended in many ways. Firstly, once more data is available, forecasts of longer 

time horizons can be studied. Especially considering that some authors, like Diebold & Li (2006) reported 

better results of parametric models in a one year horizon. Additionally, other extensions of the Nelson & 

Siegel specification can be analyzed, considering that the Svensson approached showed acceptable 

results. Among these functional forms are the ones suggested by: Björk & Christensen (1999), Bliss 

(1997) or De Rezende & Ferreira (2011). 

Furthermore, other explanatory variables can be included in the neural networks to forecast the factors 

of the selected functional form. Fabozzi, Martellini, & Priaulet (2005) suggested variables related to 

interest rates, variables related to risk, variable related to relative cheapness of stock prices and a 

sentiment variable (a measure of imbalance between market volume on puts versus calls). Finally Latin-

American yield curves may also be useful to test the hierarchical dynamic factor model for sets of a 

country yield curves suggested by Diebold, Li, & Yue (2008), in which country yields may depend on 

country factors, and country factors may depend on global factors. 
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