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Carlos León2 
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Abstract 

A maximum likelihood method for estimating the power-law exponent verifies that the 

positive and negative tails of the Colombian stock market index (IGBC) and the Colombian 

peso exchange rate (TRM) approximate a scale-free distribution, whereas none of the heavy 

tails of a local sovereign securities index (IDXTES) are a plausible case for such distribution. 

Results also (i) support critiques regarding the flaws of ordinary least squares estimation 

methods for scale-free distributions; (ii) question the validity of Zipf’s law; (iii) suggest that 

IGBC and TRM display the scale-free nature documented as a stylized fact of financial returns, 

and that they may be following a gradually truncated Lévy flight; and (iv) suggest that local 

financial markets are self-organized systems.  

JEL: C46; C58; G32 

Keywords: scale-free, power-law, Zipf’s law, financial returns. 
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1 Traditional evidence of scaling laws 

The magnitude of earthquakes, the population of cities, the intensity of wars, the level of 

rivers, the size of avalanches, the number of connections in most social and biological 

networks, and the usage of words in written share a common feature. All these phenomena 

exhibit extremely skewed distributions, where the most immediate consequence is the 

absence of a typical or average observation that may properly describe the whole sample.  

Two examples are provided in Figure 1. The left panel shows that the distribution of 

inhabitants across the Colombian territory is particularly inhomogeneous, with 

municipalities’ population extremely varying across observations. Due to the extreme 

skewness, the average population of municipalities in Colombia (i.e. 0.04 million) and its 

standard deviation (i.e. 0.23 million) are uninformative about the distribution of population 

across the territory. Moreover, the standard deviation falls short to account for the observed 

inhomogeneity, where Bogotá’s and Medellín’s population are 27.62 and 9.36 standard 

deviations away from the mean. The right panel of Figure 1, which contains the distribution of 

Colombian financial institutions’ assets size, exhibits similar patterns; Bancolombia, the 

biggest local bank by assets’ value, is more than 7 standard deviations away from the mean.  

Figure 1 
Distribution of Colombian municipalities and financial institutions3 

a. Municipalities’ population b. Financial institutions’ assets size  

  
Source: author’s calculations with data from DANE (panel a.) and Financial Superintendence of Colombia (b.). 

 
 
The inadequacy of the first two moments of a Gaussian distribution to fit the population of 

Colombian municipalities or the assets of local financial institutions is even more prominent 

when using a standard (i.e. Gaussian) Monte Carlo method for simulating municipalities or 

financial institutions. After simulating 20,000 municipalities based on the estimated mean and 

standard deviation the largest municipality would have 1.07 million inhabitants, about the 

                                                           
3 Panel (a.) data correspond to the last population census (June 2005) for 1,119 municipalities, based on public 
reports by DANE. Panel (b.) data correspond to financial reports for 114 financial institutions as of December 2012, 
based on public information from the Financial Superintendence of Colombia.  
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size of the fourth largest (i.e. Barranquilla), which is about one fifth the size of the largest (i.e. 

Bogotá); likewise, the largest financial institution by Gaussian simulation would have COP 

45.57 trillion in assets, less than two thirds the size of the biggest.4 In this sense, under such a 

skewed distribution the mathematical expectation is not informative of the shape of the 

distribution, and the dispersion (e.g. variance or standard deviation) is unable to account for 

the major heterogeneity of the observed data.  

The particularities of the distribution of population have been documented long ago, and have 

resulted in what is called the rank-size rule or Zipf’s law, which states that the population of a 

city is inversely proportional to its rank (Krugman, 1996). The most basic form to test for the 

rank-size rule is to plot size ( ) and rank (     ) using a double logarithmic scale, and to 

estimate the slope of the line relating both size and frequency across the whole distribution by 

standard ordinary least squares (OLS) regression. Figure 2 exhibits such basic test for the 

Colombian municipalities and financial institutions, which yields an estimated slope of       

and      , respectively.  

Figure 2 
Distribution of Colombian municipalities and financial institutions  

(OLS on double logarithmic scale) 
a. Municipalities’ population b. Financial institutions’ assets size 

  
Source: author’s calculations with data from DANE and Financial Superintendence of Colombia. 

 

This slope of the straight line in Figure 2a is commonly used in urban economics as a 

metropolization index (Lanaspa et al., 2004), where the higher the absolute value of the slope 

the more egalitarian the distribution of population among cities. The estimated slope 

( ̂       ) approximates to the traditional Zipf’s exponent (       ) and to the slope of 

metropolitan areas of the United States reported by Krugman (1996) and Simon (1955), and 

concurs with several estimations by Sánchez and España (2012) for the same Colombian data 

set; moreover, the fit of the OLS is fairly good (i.e.         and               for the 

slope).  

                                                           
4 The Monte Carlo simulation procedure implemented consisted of simulating 20,000 random numbers based on 
the estimated mean and standard deviation of the observed data. Since negative values are unfeasible, the absolute 
value of the Gaussian random numbers was used.      
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Remarkably, Zipf’s law (       ) is not documented for city sizes only: many other 

phenomena are accepted to follow the same regularity, such as the distribution of word 

frequencies (i.e. human vocabulary) in several languages, the size of avalanches, highway 

traffic and the water level of rivers (as reported in Bak, 1996; Simon, 1955; Mandelbrot and 

Hudson, 2004). Regarding the size of financial institutions, Fiaschi et al. (2013) find that the 

assets of financial firms in the United States also comply with Zipf’s law; in the Colombian 

case, however, despite the fit is –again- fairly good (i.e.         and              for the 

slope), Zipf’s law does not hold according to Figure 2b ( ̂      ). 

Mathematically, a straight line on a double logarithmic plot is called a “power-law” (Bak, 

1996). In the case in hand this means that the probability (      ) of finding a municipality or 

financial institution of size   can be expressed as some power of  , as in [§1], where 

estimating the order of the power is usually done by means of the logarithmic transformation 

in [§2]. Under this mathematical representation the slope is positive by construction, where 

Zipf’s law corresponds to  ̂     ; thus, hereafter the minus sign vanishes when estimating  .  

          [§1] 
where  

                [§2] 
 

Finding that a straight line fits the observed data on a double logarithmic scale has another 

interpretation. Since the straight line is the same everywhere, where there are no features at 

some scale that makes that particular scale stand out (Bak, 1996), the distribution of such data 

is called scale-free or scale-invariant.  

However, Zipf’s law is a particular case of a power-law. Other magnitudes for  ̂ are feasible, 

and have been documented for various phenomena. The most well-known case of estimating 

the slope of a straight line that fits observed data on a double logarithmic scale dates back to 

Pareto’s work on the distribution of wealth: in the wake of the twentieth century, based on tax 

record data from Basel (Switzerland) and Augsburg (Germany), rental income from Paris, 

personal income from Britain, Prussia, Saxony, Ireland, Italy and Perú, Vilfredo Pareto found 

that the straight line that fitted plotting income against the number of people had a particular 

slope,  ̂   ⁄ , which was consistent with much wealth concentrated in very few hands 

(Mandelbrot and Hudson, 2004).  

Another well-known phenomenon that has been documented as approximating a power-law 

with  ̂   ⁄  pertains to geology, and is related to the magnitude of earthquakes and their 

frequency. As in the case of wealth and city sizes, most earthquakes are of low –almost 

imperceptible- magnitude, whereas a few are devastating. Such distribution of the energy 

released by earthquakes is characterized by the Gutenberg-Richter scale (i.e. the Richter 

scale), which states that the probability of finding an earthquake releasing an   amount of 

energy is             .  
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Mandelbrot is credited for introducing the double logarithmic plot to determine the scaling 

properties of financial time-series.5 Using a century of daily U.S. cotton prices Mandelbrot 

(1963) found  ̂    , a result verified by Fama (1963 & 1965). Based on his findings 

Mandelbrot would contend the Brownian motion assumption with its generalized version (i.e. 

fractional Brownian motion), and would suggest changing from the Gaussian hypothesis for 

price changes to the stable Paretian or stable Lévy hypothesis, in which the exponent that 

determines the height of the tails ( ) is the most important for comparing the goodness-of-fit 

against the traditional Gaussian hypothesis (Fama, 1963).6 

 

2 Advances in the estimation of power-law exponents 

Despite its simplicity and informational content, using the double logarithmic plot or the 

analogous OLS regression to determine the scaling properties of data is problematic. Several 

authors (Clauset et al., 2009; Sinha et al., 2011; Stumpf and Porter, 2012) have documented 

the main problems behind the traditional OLS method for estimating and confirming (or 

rejecting) a distribution approximating a power-law. Moreover, as in Clauset et al. (2009), 

new estimation techniques have rejected many of those data sets long considered as 

approximating a power law (e.g. earthquake intensity, net worth, links to web sites), whereas 

some others have been confirmed (e.g. words frequencies, city sizes, co-citation in scientific 

papers, scientific papers authored) or revealed (e.g. solar flare intensity, intensity of wars, 

terrorist attack severity, power blackouts).  

Based on Clauset et al. (2009), the three main drawbacks of traditional estimation of power-

law exponents are the following:  

a. Few empirical phenomena obey power laws for all values of x; in such cases the tail of 

the distribution follows a power-law, and –thus- the estimation should be confined to 

the tail.  

b. The ordinary formula for the calculation of the standard error on the slope of the 

regression is correct when the assumptions of linear regression hold, which include 

                                                           
5 Benoit Mandelbrot was presumably the first academic to stress the lack of normality in financial returns 
(Carmona, 2004). However, Mitchell (1915) documented that empirical distribution of asset prices differed 
significantly from the Gaussian assumption, mostly due to the presence of excess kurtosis.  
6 The stable Paretian hypothesis, also known as stable Lévy, states that      , with     being the particular 
case of the Normal distribution; it is called “stable” since the distribution of sums of independent, identically 
distributed, stable Paretian variables is itself stable Paretian and, except for origin and scale, has the same form as the 
distribution of the individual summands (Fama, 1965). In the stable Paretian hypothesis (     ) variance exists 
(i.e. is finite) only in the case    , and the mean exists as long as     (Fama, 1963). Since estimations by 
Mandelbrot (1963) and Fama (1963 & 1965) resulted in    , results verified that financial time-series diverge 
from the Gaussian hypothesis.  
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independent, Gaussian noise; using a logarithmic transformation turns the noise into 

non-Gaussian, which may turn the estimation of error unreliable.7  

c. Distributions that are nothing like a power-law can appear to follow a power-law for 

small samples and some, like the log-normal, can approximate a power-law closely 

over many orders of magnitude, resulting in high values of   ; then, traditional OLS 

goodness-of-fit tests are non-informative since the probability of successfully detecting 

a violation of the power-law assumption is low.  

Therefore, Clauset et al. introduce a maximum likelihood estimation (MLE) procedure for 

estimating the power-law exponent for observations pertaining to the tail of the data. Let 

      be the observed values of   such that        , in which      is the threshold for 

defining the part of the data that will be considered for fitting the power-law model (i.e. the 

tail), the MLE is defined as in [§3].8 This MLE is known as the Hill estimator, which is 

documented to yield asymptotically normal and consistent estimates of   from random 

samples of a distribution with an asymptotic power-law form (Clauset et al., 2009; Sinha et al., 

2011; Dowd, 2005).9  

 ̂     [∑  
  

    

 

   

]

  

 

[§3] 

 

Fitting a Pareto-type (i.e. power-law) parametric distribution cannot accommodate at the 

same time the features of the bulk of the data and of the tail (Carmona, 2014); hence, defining 

     is key for the procedure. If      is set too low (i.e. not discarding too much data) the 

estimated exponent will be biased due to fitting the model to non-power-law data. If      is 

set too high the estimation will be biased due to discarding potentially useful data, and 

statistical error will emerge from finite size effects.  

As discussed by Clauset et al. (2009), several methods are available for defining     , 

including the visual inspection of  ̂ for different values of     . Yet, Clauset et al. choose to 

employ the Kolmogorov-Smirnov standard non-parametric test for equality of probability 

distributions, which calculates the maximum distance ( ) between the cumulative 

distribution function from the data and the fitted model.10  

Let      be the cumulative probability function (CDF) for the power-law model that best fits 

the data in the         sample, and      the CDF for the same sample,      corresponds to 

the value that minimizes   in [§4].  

                                                           
7 Some authors prefer to use the cumulative density function (CDF) instead of the probability density function 
(PDF), where the latter is the one used in Figure 2. When using the CDF not only the errors are non-Gaussian, but 
may be dependent due to their cumulative nature.  
8 Clauset et al. (2009) defines separate methods for the continuous and discrete data; since the data considered in 
this document is continuous, the latter is not discussed. As usual, all power-law exponents correspond to 
estimations from data, therefore the usage of  ̂ instead of  ; the true value of the power-law exponent is unknown.   
9 Some drawbacks of the Hill estimator are documented in Dowd (2005). 
10 Sinha et al., (2011) suggest an alternative based on the minimization of the estimation error in [§3] by the 
subsample bootstrap method. 
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|         | [§4] 

 

However, the MLE in [§3] will only yield the best fit to the power-law functional form under 

the choice of     . Since any data can be fitted to any theoretical distributional form (e.g. 

Gaussian, exponential, power-law), a goodness of fit test is required in order to assess if the 

data significantly deviates from the theoretical target.  

Again Clauset et al. (2009) rely on the Kolmogorov-Smirnov standard non-parametric test for 

equality of probability distributions. The proposed test consists of comparing the empirical 

data set with a significant number of samples of synthetic data sets from a true power-law 

distribution. If empirical data deviates too much from the synthetic samples, it is possible to 

state that the data is not drawn from a power-law distribution.  

As designed by Clauset et al., the p-value ( ) resulting from this goodness-of-fit-test is the 

fraction of the time the distance from the synthetic samples and their best fit to the power-law 

functional form is larger than the distance from the empirical data and its best fit.11 Thus, the 

higher  , the better the fit to the power-law functional form. According to Clauset et al., a 

conservative threshold for ruling out the power-law hypothesis is       ; this threshold 

corresponds to those cases in which 10% or less of the synthetic power-law data and their 

corresponding best fit resulted in larger deviations (i.e. poorer fits) than that of empirical data 

and its best power-law fit.  

There are two main limitations of the estimation and testing procedures by Clauset et al. 

(2009). First, attaining a high   does not necessarily mean that the power-law form is the 

correct distribution for the data; other similar (i.e. skewed) distributions may provide an 

equal or better fit. Second, if   (i.e. the number of observations beyond     ) is small 

(     ),   may become inaccurate. However, compared to the old-fashioned OLS estimation 

method and its said downsides, the MLE method and the goodness-of-fit-test are a major and 

patent enhancement to the fitting of power-laws in empirical data.     

Based on the method presented in this section, Figure 3 presents the double logarithmic plot 

corresponding to the two data sets used so far. The circles (in red) represent the observed 

data, whereas the triangles (in green) correspond to a Gaussian Monte Carlo simulation based 

on the mean and standard deviation estimated from observed data12, in which each solid line 

represents the best power-law fit attained with the MLE procedure; unlike Figure 2, the 

vertical axis uses a log cumulative distribution scale.  

 
                                                           
11 As in Clauset et al. (2009), the procedure is as follows: (i) based on [§3] and the choice of     , calculate  ̂; (ii) 
calculate the K-S test (i.e. the distance) for the empirical data and the best fit; (iii) generate a large number of 
power-law distributed synthetic data sets with  ̂ and     ; (iv) calculate the K-S test for the synthetic data and 
their corresponding individual best fit; (v) count the fraction of the time the K-S test for synthetic data is larger 
than for the empirical data.   
12 All Monte Carlo simulations hereafter consisted of generating Gaussian distributed random numbers, where the 
quantity of random numbers equals three times the size of the original data set. As usual, the corresponding 
process uses the estimated mean and standard deviation. 
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Figure 3 
Distribution of Colombian municipalities and financial institutions 

(MLE on double logarithmic scale)* 
a. Municipalities’ population b. Financial institutions’ assets size** 

  
(*) Circles in red correspond to observed data; triangles in green to Gaussian synthetic data.   

(**) Bancolombia [A]; Banco de Bogotá [B]; Banco Davivienda [C]; Citibank Colombia [D]. 
Source: authors’ calculations. 

  

Two main remarks may be extracted from Figure 3a. First, the difference between the 

observed data (circles in red) and the Gaussian synthetic data (triangles in green) is evident; 

as expected, Gaussian distributed data result in a large horizontal line with a short fast-

decaying (i.e. vertical) tail, whereas the observed data has a short horizontal section and a 

large slow-decaying tail. Second, the line that corresponds to the power-law fit for the 

Gaussian synthetic data is steeper, almost vertical, whereas the fit for the observed data 

exhibits a moderate slope.  

Regarding Figure 3b, the most striking remark arises from the “interruption” in the observed 

data, which appears to break the size of financial institutions in two clear groups, each one 

with a different distributional form.13 Other remarks come in the form of the starting point of 

the MLE fit, in which      corresponds to the first financial institution of the “big financial 

institutions” group, and –again- the rapid decay of the Gaussian synthetic data.  

Table 1 presents the numerical results. Based on the MLE method presented and the 

corresponding goodness-of-fit-test, both data sets follow a power-law distributional form. Yet, 

the value of the exponent for the municipalities’ population is much higher than that 

estimated with OLS (i.e. almost twice as much); therefore, Zipf’s law does not hold under the 

MLE estimation method for the size of Colombian municipalities, and the best fit for the 

power-law is for municipalities equal or larger than 14,784 habitants. The MLE estimated 

power-law for the financial institutions’ assets size is not very different from that of the OLS, 

but the best fit is limited to financial institutions equal or larger than COP 8.52 trillion.    

 

                                                           
13 Fiaschi et al. (2013) document a similar “interruption” for United States’ financial institutions as well.  
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Table 1 

Colombian municipalities and financial institutions* 

Stats  Population Assets size 

Observations  1,119 114 

Mean  0.04 3.34 

Standard deviation  0.23 10.11 

Kurtosis  661.06 28.80 

Skewness  23.77 4.74 

 ̂    

   

 

 

1.07  

0.92 

2.41  

0.91 

 ̂    

  

     

2.15  

0.30 

0.014 

2.45 

0.79 

8.52 

(*) Mean, standard deviation and      are in the original units: 
population in habitants (millions) and asset size in COP (trillions). 
Source: author’s calculations.  

 

3 Estimating power-law tail exponents on Colombian financial time-series 

Cont (2001) documents that the distribution of financial returns display power-law or Pareto-

like tails exponents in the    ̂    range.14 Sinha et al. (2011) and Gabaix et al. (2003a,b) 

document that the tails of the cumulative return distribution of several stock indexes (e.g. S&P 

500, FTSE, DAX, IPC, WIG) and some individual stocks actually follow a power-law with an 

exponent  ̂   , also known as the inverse cubic law. Likewise, Gopikrishnan et al. (1998) 

confirm the inverse cubic law for the three major US stock markets (i.e. NYSE, NASDAQ and 

AMEX), and find that the right and left tail display different power-law exponents (i.e. 

 ̂                and  ̂              ). On a wide sample of 202 stock markets, Eryigit 

et al. (2009) finds that the inverse cubic law holds under some assumptions (i.e.      

  standard deviation , but that other distributions could better fit the data as well. When 

estimating      by means of K-S test (as in Clauset et al., (2009)) Eryigit et al. found power-

law exponents close to 4 (i.e.  ̂           and  ̂         ). 

Three Colombian financial time-series are used to test the fit of a power-law exponent to their 

positive and negative tails based on the method developed by Clauset et al. (2009). The first 

series correspond to the official Colombian Peso – United States Dollar exchange rate, known 

in the local market as TRM (Tasa Representativa del Mercado); the second corresponds to 

IGBC (Índice General de la Bolsa de Valores de Colombia), the main index of the Colombian 

stock exchange; the third corresponds to IDXTES, a total-return index for local sovereign 

                                                           
14 Such tail regime (     ) excludes infinite variance regimes (   ) and the Normal distribution (   ).  
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securities developed by Reveiz and León (2010).15 The Standard and Poor’s 500 (S&P500) U.S. 

stock market index is presented for comparison purposes.  

The main statistics of these four time-series are presented in Table 2. Standard Normality 

tests (i.e. Jarque-Bera and Kolmogorov Smirnov) rejected the null hypothesis of normality of 

returns at the 5% significance level. 

Table 2 

Main statistics of selected time-series 

Statistic TRM IGBC IDXTES S&P 500 

Observations 3,316 3,387 3,311 8,544 

Mean                                     

Standard deviation                                     

Skewness                            -1.16 

Kurtosis 12.49 16.90 14.47 29.57 

Source: authors’ calculations 

 

Time‐series were transformed to individual vectors in a unitary form, namely by subtracting 

to each record its corresponding mean value and normalizing it to its standard deviation. Not 

only this transformation allows for comparisons between time-series, but it also allows to 

work   and      in a terms of standard deviations.  

The substantial departure of observed data (crosses in blue) from the straight line in the Q-Q 

plots (Figure 4) evidences substantial excess kurtosis as a common feature of the four time-

series. Both tails, left and right, corresponding to price decreases and increases, respectively, 

display thicker tails than the Gaussian hypothesis assumes.  

 

 

 

 

 

 

 

                                                           
15 Based on spot transactions between foreign exchange market intermediaries, TRM is calculated by the Financial 
Superintendence of Colombia. As of April 15 2013 IGBC was replaced by COLCAP, but IGBC was calculated until the 
end of November 2013; since the new index (COLCAP) has limited data (i.e. from January 2008), the IGBC is 
preferred. The three local time-series comprise daily data from January 2000 to November 2013.  
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Figure 4 
Q-Q plots of selected time-series 

 
Figure 5 displays the distribution of the left and right parts of the distribution of the four 

selected time-series. As before, circles (in red) correspond to observed data, whereas 

triangles (in green) result from Gaussian synthetic data. Unlike the plots for Colombian 

municipalities’ population and financial institutions’ asset size, the departure from the 

Gaussian hypothesis is less evident: observed and synthetic data share a large horizontal line 

with a fast-decaying tail, in which the Gaussian decays faster (i.e. it is steeper).  

However, despite the graphical similarity, the differences are quantitatively unmistakable. For 

instance, in the TRM case several observed returns exceed the largest Gaussian, with the 

largest negative (positive) change corresponding to about       (7.54) standard deviations, 

more than twice the largest change under the Gaussian simulation (     ); in the S&P 500 

case, the largest negative change, corresponding to the     standard deviation drop in 

October 19 1987, is about 5.8 times the largest under Gaussian assumptions (     ). 

Graphical comparison between time-series exhibits different degrees of deviation of the 

observed data with respect to the best power-law fit. It seems that the fit for the IDXTES 

series is the less appropriate, in which the most extreme price changes, positive and negative, 

do not follow the straight line corresponding to the attained power-law form. On the other 

hand, the best power-law fit for TRM, IGBC and S&P500 seems to be appropriate.   

TRM IGBC 

  
  

IDXTES S&P 500 

  
Source: author’s calculations. 



12 
 

Figure 5 
Distribution of time-series 

(MLE on double logarithmic scale)* 
 Negative normalized returns Positive normalized returns 
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(*) Circles in red correspond to observed data; triangles in green to Gaussian synthetic data.   

Source: authors’ calculations 
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Table 3 summarizes the quantitative results from fitting the power-law to the four selected 

time-series. Three immediate remarks arise. First, all OLS estimations  

verify Zipf’s law ( ̂        ) with high goodness-of-fit levels (            ). Second, all 

MLE estimations invalidate Zipf’s law (     ̂        ), and concur with the asymptotic 

behavior reported by Cont (2001). Third, the positive and negative returns of TRM and IGBC, 

and the negative returns of the S&P 500 are consistent with their tail approximating a power-

law hypothesis, with       , in which  ̂     , as also reported by Eryigit et al. (2009); on 

the other hand, the power-law hypothesis is incompatible with IDXTES and the positive 

returns of S&P 500.  

 

Table 3 

Power-law fit for selected time-series* 

Stats  TRM 

  |   

IGBC 

  |   

IDXTES 

  |   

S&P 500 

  |   

Observations ( ) 1,694 | 1,622 1,667 | 1,720 1,636 | 1,675 4,160 | 4,384 

 ̂    

   

1.02 | 1.08 

0.63 | 0.65 

1.03 | 0.98 

0.65 | 0.63 

1.04 | 1.01 

0.70 | 0.65 

0.99 | 0.96 

0.64 | 0.62 

 ̂    

  

     

  

  ⁄  

4.42 | 3.48 

0.44 | 0.17 

2.01 | 1.48 

  87 | 177 

0.05 | 0.11 

3.67 | 3.71 

0.65 | 0.90 

1.67 | 1.22 

140 | 233 

0.08 | 0.14 

2.70 | 3.43 

0.00 | 0.04 

0.77 | 1.27 

428 | 211 

0.26 | 0.13 

4.01 | 3.97 

0.47 | 0.05 

1.93 | 1.76 

237 | 259 

0.06 | 0.06 

(*)   and – correspond to positive and negative returns, respectively;      is in a standard 
deviation scale; since   corresponds to the number of   observations such that  
       and   to the number of positive or negative returns,   ⁄  is the percentage size of the 
tail regime according to the MLE procedure. Source: author’s calculations.  

 

The strongest cases for a power-law hypothesis (      ) are those of IGBC, negative returns 

of S&P 500 and negative returns of TRM; positive returns of TRM being consistent with a 

power-law are of moderate plausibility. For these cases the tail regime is in the           

     standard deviations range, in which the number of data as a percentage of the 

corresponding (i.e. negative or positive) returns is in the range  

       ⁄      .16  

Since a lower exponent corresponds to a slower decay, the right tail of TRM appears to be 

fatter, which may be linked to an observation made by Rebonato (1999) and Derman (2008): 

volatility smiles tend to exhibit a pronounced asymmetry in the emerging markets’ exchange 

rates case, where the higher volatility corresponds to the depreciation of the local currency.  

                                                           
16 Christofferesen (2003) documents that using 5% of the data for samples around 1000 observations is a good 
rule of thumb for this type of estimations. Results in Table 3 suggest that this rule would be fair for the positive tail 
of TRM, in which the number of observations in each tail ( ) is 5.34% of the data set. However, as expected from 
this type of rules, other tails are larger (i.e. IGBC positive tail, 6.9%) or smaller (i.e. TRM negative tail, 2.6%; S&P 
500 negative tail, 2.8%; IGBC negative tail, 4.1%.   
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On the other hand, IGBC’s negative tail having a lower power-law exponent may be linked to 

the well-known volatility smirk for stock markets, in which extreme negative price changes 

are overpriced with respect to extreme positive changes (Hull, 2003; Geman, 2005), in what 

has been called “crashophobia”. Despite the difference between the power-law exponents in 

the IGBC case is small enough to be questionable, it agrees with findings by Gopikrishnan et al. 

(1998) and Eryigit et al. (2009).  

 

4 Final remarks 

Some findings are worth emphasizing. First, most of the empirical data analyzed here appears 

to follow Zipf’s law (   ) when implementing typical –yet questionable- OLS regression-

based methods, in which standard goodness-of-fit statistics performed rather well (   

    ). However, when implementing enhanced estimation methods Zipf’s law resulted an 

invalid functional form; this is true even for the renowned and well-documented distribution 

of cities or municipalities.  

These results support critiques regarding the flaws of OLS-based estimations of power-laws 

and their potential for misleading analysis. As Clauset et al. (2009) conclude: the common 

practice of identifying and quantifying power-law distributions by the approximately straight-

line behavior on a double logarithmic plot should not be trusted: it is a necessary but by no 

means a sufficient condition for true power-law behavior.  

Second, the enhanced estimation method and goodness-of-fit statistic designed by Clauset 

(2009) verify that the size of Colombian municipalities and financial institutions, the local 

exchange rate index (TRM), the local stock market index (IGBC) and the negative returns of 

the S&P 500 U.S. stock index approximate a power-law tail distribution. On the other hand, 

despite the evidence of fat positive and negative tails, a power-law tail distribution is not a 

plausible distribution for the local sovereign securities index (IDXTES) and the positive 

returns of S&P 500; other heavy tail distributions may provide a better fit.  

Third, regarding TRM, IGBC and the negative returns of S&P 500, results concur with the 

stylized facts of financial returns reported by Cont (2001), in which the power-law tail 

exponents are in the    ̂    range. Results coincide with those of Eryigit et al. (2009), who 

find that for a 202 stock market indexes the power-law exponents are close to 4; thus, results 

do not approximate the inverse cubic law suggested by Sinha et al. (2011), Gabaix et al. 

(2003a,b) and Gopikrishnan et al. (1998). 

Fourth, based on the results, it seems reasonable to suggest that TRM, IGBC and the negative 

returns of S&P 500 may be described as following a gradually truncated Lévy flight (Gupta and 

Campanha, 1999).17 This type of model combines a Lévy flight distribution model (     ) 

                                                           
17 Using a Lévy stable distribution or Lévy flight alone is problematic since in most of the cases variance is infinite; 
the only case in which variance is finite is when    , corresponding to a Gaussian distribution. For instance, 
findings by Mandelbrot (1963) and Fama (1963 & 1965) converge to a Lévy stable distribution for asset prices 
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for the bulk of the distribution (e.g.       ) and a gradual cut-off outside the Lévy flight; in 

our case, the gradual cut-off may be provided by the tail power-law estimated exponent, 

which is outside the Lévy flight (i.e.  ̂   ). 

To the best knowledge of the author, fitting any sort of a gradually truncated Lévy flight has 

not been attempted for the Colombian indexes here considered. However, the shape of the 

double logarithmic plots in Figure 5, in which the bulk of the data (      ) is mostly 

straight but noticeable flatter than the tail regime (      ), suggests that if a power-law is 

in place its exponent would be higher than zero but lower than the herein estimated tail’s 

exponent, possibly in the Lévy regime (     ). Verifying the fit of a gradually truncated 

Lévy flight to local financial time-series is a pending task.          

Fifth, there is an obvious closeness of the contents and results of this research document with 

extreme value theory (EVT) basics. For some strange reason, in financial applications, Pareto-

like heavy tail distributions are parameterized by     ⁄  which is called the shape 

parameter of the distribution (Carmona, 2014). Within the EVT framework, all attained 

exponents concur with the Fréchet distribution ( ̂   ), with most of them resulting in the 

   ̂       range, which is the typical range of heavy-tailed financial returns (Dowd, 

2005).18  

Sixth, finding that a distribution is heavy-tailed and that the tail approximates a power-law 

should not be an end in itself; despite identifying the presence of fat tails is relevant for risk 

management, finding that empirical financial data fits a power-law is a first step towards the 

understanding of financial markets. Several authors, in different scientific realms, agree on 

power-law distributions being characteristic of self-organizing systems (Andriani and 

McKelvey, 2009; Strogatz, 2003; Barabási, 2003; Barabási and Albert, 1999; Bak, 1996; 

Krugman, 1996). Under the self-organized systems framework the assumptions of 

homogeneity, linearity and equilibrium are absent, and large fluctuations (e.g. outside the 

Gaussian) may occur from small frequent events, and not only if many random events 

accidentally pull in the same direction, which is prohibitively unlikely (Bak, 1996).  

Several authors have already linked the divergence of financial returns and other economic 

data from Gaussian distributed returns to the self-organizing properties of financial markets 

and the economy as a whole. For instance, Marsili (2003) points out that the main stylized 

facts of financial fluctuations (i.e. fat tails, scaling, long-range volatility correlations) and their 

considerable deviation from Gaussian statistics provide empirical evidence of financial 

markets as complex self-organizing critical systems; this is, markets typically behave in a 

Gaussian manner, but when approaching a critical point or phase transition they behave 

according to the stylized facts. Likewise, Sinha et al. (2011) points out that the apparent 

                                                                                                                                                                                 
with      , which results in lack of convergence of distributions towards a Gaussian at longer time-scales. 
Mantegna and Stanley (1994) introduced the truncated Lévy flight, in which the Lévy flight is abruptly cut to zero 
at a certain critical threshold.   
18 The only time-series not complying with the    ̂       range is the negative returns of IDXTES. Besides, 
according to the goodness-of-fit tests here implemented, a power-law is not a plausible distribution for its tails.  
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universality behind power-law tails may indicate that different markets self-organize to an 

almost identical non-equilibrium steady state.       

If financial markets display some sort of hierarchical architecture resulting from its self-

organization19, such architecture may help explain the behavior of prices as well. For instance, 

as suggested by Gabaix et al. (2003a), large movements in stock markets result from large 

transactions from large financial institutions, with the size of transactions and financial 

institutions following a power-law as well20 (the size of Colombian financial institutions 

following a power-law is also verified in this document). In this sense, heterogeneity would be 

a key factor behind the behavior and dynamics of financial markets, against typical economic 

models based on the homogeneity of financial institutions and their linkages (as in Allen and 

Gale (2000) and Freixas et al. (2000)).  

Under the same self-organization concept, Krugman (1996) describes the economy as a self-

organizing system, in which economic cycles describe a punctuated equilibrium, with long 

periods of relative quiescence divided by short periods of rapid change, in which sudden changes 

come when a previously state of equilibrium becomes unstable, setting the system adrift while it 

searches for a new equilibrium. Within an economic framework, this could help to understand 

why some of the most extreme price changes (e.g. the Great Depression) occurred in the 

absence of any obvious cause, or why a modest linkage between two economies could be the 

conduit for a large cascade (Krugman, 1996).  

Finally, some challenges arise from this document: (i) increasing the size of the data sets, with 

intraday data sets being a typical solution to this issue; (ii) fitting a gradual truncated Lévy 

flight model; (iii) testing the results for individual stocks and sovereign securities; (iv) testing 

scale-free nature of financial markets’ transactions volumes; (v) further interpreting the 

power-law exponent, which is a long-lived issue.   

  

                                                           
19 As recently suggested by León and Berndsen (2013) for the Colombian case. 
20 Gabaix et al. (2003) reveals some regularities in financial fluctuations: the cubic law of returns, the half cubic law 
of volumes and the approximate cubic law of number of trades. They link these regularities to economic 
optimization by heterogeneous agents.   
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