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On Forecast Evaluation
∗

Wilmer Osvaldo Mart́ınez-Rivera†

Manuel Dario Hernández-Bejarano‡

Juan Manuel Julio-Román§

Abstract

We propose to assess the performance of k forecast procedures by exploring the
distributions of forecast errors and error losses. We argue that non systematic forecast
errors minimize when their distributions are symmetric and unimodal, and that forecast
accuracy should be assessed through stochastic loss order rather than expected loss
order, which is the way it is customarily performed in previous work. Moreover, since
forecast performance evaluation can be understood as a one way analysis of variance,
we propose to explore loss distributions under two circumstances; when a strict (but
unknown) joint stochastic order exists among the losses of all forecast alternatives,
and when such order happens among subsets of alternative procedures. In spite of the
fact that loss stochastic order is stronger than loss moment order, our proposals are at
least as powerful as competing tests, and are robust to the correlation, autocorrelation
and heteroskedasticity settings they consider. In addition, since our proposals do not
require samples of the same size, their scope is also wider, and provided that they
test the whole loss distribution instead of just loss moments, they can also be used to
study forecast distributions as well. We illustrate the usefulness of our proposals by
evaluating a set of real world forecasts.
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Sobre la Evaluación de Pronósticos
§

Wilmer Osvaldo Mart́ınez-Rivera1

Manuel Dario Hernández-Bejarano2

Juan Manuel Julio-Román3

Resumen

Proponemos evaluar el desempeño de k procedimientos de pronóstico explorando
las distribuciones de los errores de pronóstico y de sus pérdidas. Argumentamos que los
errores no sistemáticos de pronóstico se minimizan cuando su distribución es simétrica
y unimodal, y que la precisión de los pronósticos debe evaluarse a través del orden
estocástico de sus pérdidas en vez del orden de las pérdidas esperadas, que es como se
propone en trabajos anteriores. Adicionalmente, como la evaluación de pronósticos se
puede entender como un análisis de varianza a una v́ıa, proponemos explorar las dis-
tribuciones de las pérdidas bajo dos circunstancias; cuando hay un orden estocástico
conjunto (desconocido) entre las pérdidas de los k procedimientos, y cuando este orden
ocurre en subconjutos de estos. A pesar de que el orden estocástico es más fuerte
que el orden de las pérdidas esperadas, nuestras propuestas son tan potentes como
las competidoras además de ser robustas a las correlaciones, autocorrelaciones y het-
erogeneidades consideradas para estas. De igual manera, como nuestras propuestas
no requieren muestras del mismo tamaño, su campo de aplicación es más amplio, y
como exploran la distribución de la pérdida en vez de solo sus momentos, también se
pueden utilizar para evaluar las distribuciones de pronóstico de distintos procedimien-
tos. Finalmente, ilustramos la utilidad de nuestras propuestas evaluando un conjunto
de pronósticos de la vida real.

Palabras Clave: Evaluación de pronósticos, Orden estocástico, Comparaciones
múltiples.
JEL: C53, C12, C14.
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1 Introduction

Forecasting pervades all human endeavors particularly the design of policies in inflation
targeting central banks. In fact, under flexible forecast targeting the most important
outputs of the central bank are the short to medium term inflation and economic activity
forecasts, which arise from a great variety of sources like the central bank’s own suit of
models, surveys on external agents and experts, and from internal experts judgment. These
forecasts are then comprised into the official ones which serve the board of governors as
guide to design its policies. See Svensson (2007), for instance.

The summarization above is based on the assessment of the performance of relevant
forecast alternatives, which can be based on two types of evaluation procedures; forecast
information disagreement statistics like RMSE, MAE, MAPE, etc., which rank forecast
performance depending on the values these statistics assume, and formal forecast perfor-
mance tests. The former ones are subject to criticism as they lack statistical significance
interpretation, and therefore there is marked preference for the latter procedures. See
Hyndman and Athanasopoulos (2013) and Diebold and Mariano (1995), for example.

Two statistical tests stand out among the formal methodologies to determine the
out of sample performance of a set of k ≥ 2 forecast procedures of an observable process
{Xt}t. Consider sample information consisting of k paired sets of size n, {Xi1,Xi2, . . . ,Xin}
of out of sample forecast errors at a fixed horizon h, arising from i = 1, 2, . . . , k fore-
cast procedures denoted M1,M2, . . . ,Mk,. Given a concave loss function L(·), and let-
ting dt = [d1t, d2t, . . . , dk−1,t] be the loss difference process dit = L(Xit) − L(Xi+1,t),
Mariano and Preve (2012), MP, propose to test the null of equal expected loss

H0 : E(dt) = 0 (1)

against the alternative of at least one difference

H1 : E(dt) 6= 0 (2)

using a Wald type statistic SMP = nd
′
Ω̂−1d, where Ω̂ is an estimate of the asymptotic

(long run) variance covariance matrix of
√
n
(
d− µ

)
and d = µ̂ = Ê [dt]

4. Under the null
and the assumptions that the k ≥ 2 models producing the forecasts are arbitrary and dt is

stationary and has Wold representation, SMP
D−→ χ2

(k) as n → ∞. These authors provide
the conditions under which this asymptotic behavior is invariant to permutations of the
procedures, and also provide a modified test to correct SMP size in small samples, SMPc.

On the other hand, Giacomini and White (2006), GW, propose two tests; a con-
ditional and an unconditional test for k = 2 only. The conditional test determines the

4Mariano and Preve (2012) test is a multivariate version of Diebold and Mariano (1995).
In this setting it is customary to consider square, absolute, lin-lin and linex losses, among others.
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more accurate forecast alternative for a specific horizon while the unconditional tests
establishes which of two alternatives was more accurate. The later test coincides with
Diebold and Mariano (1995) test for k = 2. Under weaker assumptions than MP’s, the

unconditional test statistic tT,n,h =
dT,n

σ̂n/
√
n
has an asymptotic standard normal distribution

under H0 above, for k = 2, where T is the sample size used to forecast, dT,n = 1
n

∑n
t=1 dt,

and σ2n is the long run variance of
√
n
(
dt − E[dt]

)
.

These tests, MP and unconditional GW, have important advantages over previous
methodologies like the possibility of including heterogeneity, time series dependence, and
structural breaks within the forecast sample. However, they have important drawbacks as
well. First, these tests assess the relative performance of competing forecast alternatives
through expected loss order only. By focusing on these figures many features of the fore-
cast error and loss distributions of competing procedures are disregarded, which may lead
to sub-optimal choices. Second, their tests statistics have asymptotic rather than exact
distributions under the null, which may lead to considerable size distortions in small sam-
ples. And third, they have not been proved to be UMP, i.e. Uniformly Most Powerful.
Therefore, room for improvement still remains.

We propose a two step methodology to assess the performance of a set of k ≥ 2
forecast procedures by exploring the distribution of forecast errors and error losses. In
the first step forecast alternatives are chosen to have desirable unconditional forecast error
distribution properties. In the second, the remaining procedures are ranked according to
the stochastic order of error losses. Under the assumption that there is a strict stochas-
tic order among the loss functions of all k procedures, we propose to use the maximum
Jonckheere (1954) test statistic among all alternative order permutations to rank their joint
performance. However, if strict order happens only among subsets of alternatives, multiple
comparisons tests reveal their forecasting ability.

Using Jonckheere’s test for our procedures has several advantages over the afore-
mentioned tests as well. First, Jonckheere’s test compares the distribution of error losses
instead of expected losses. More specifically, the alternative of loss stochastic order is
stronger than the alternative of expected loss order, being the former closer to “highly de-
sirable” forecast behavior as it takes into account non systematic forecast error departures
from optimal forecasts. Second, Jonckheere’s test statistic has exact small sample distribu-
tion under the null, which favors its use in many situations, e.g. when moving windows of
small size are analyzed as proposed by Fama and MacBeth (1973). Third, Jonckheere’s test
is non parametric, that is no distributional sample assumption are imposed before hand.
Fourth, if strict stochastic order exists only among subsets of the alternative procedures,
the multiple comparisons test version provides their ranking as well. Furthermore, since
Jonckheere’s test works for non paired samples, its scope is wider as paired samples with
missing forecasts can be analyzed. And finally, since Jonckheere’s test probes the whole
distribution rather than just its moments, it may also be useful to assess the performance
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Bayesian forecast error distributions.

We compare the power of the joint and multiple comparisons tests based on Jonckheere
(1954)’s test with the power of the corresponding joint and multiple comparison versions
of Mariano and Preve (2012) test. We implemented two alternative simulation set ups to
estimate the power function, the first follows closely Giacomini and White (2006) and the
second is an adaptation of Mariano and Preve (2012).

Finally, we provide provide an illustration of the use of our tests in a real world
forecasting situation.

The rest of the paper is distributed in 4 sections apart from the introduction. The
second discusses the properties of well behaved forecast errors where we favor the use of
non parametric tests with exact small sample distribution test statistics under the null. In
the third we describe Jonckheere (1954)’s test and the procedures we propose. The fourth
contains the comparison of power functions and a real world illustration. The last contains
the conclusions and discussion.

2 What makes a good forecast procedure?

The properties of well behaved forecast are well known in the literature. A forecast alter-
native is loss optimal if it minimizes the expected loss, i.e. the forecast risk, among forecast
alternatives. Clearly, this kind of optimality does not necessarily lead to unbiased forecasts,
which arise under squared loss, for instance. However, even in this case the distributions
of forecast errors and error losses might not necessarily be well behaved.

The case for forecast error distribution unimodality and symmetry relates to non
systematic forecast errors. These types of errors occur when the frequency of forecast errors
in particular subsets of its support are unexpectedly large, e.g. under multi modality with
wide gaps between the modes or under skewness. In the former case a higher than expected
frequency of forecast errors will happen around each mode, and since the modes are wide
apart a higher than expected frequency of large errors would arise. In the later case, a
higher than expected frequency of positive or negative forecast errors may also emerge.

These facts however, do not necessarily affect forecast unbiasedness, a systematic
distribution feature. In fact, strong non systematic departures from symmetry, for instance,
may lead to forecast bias, but the implication the other way around is not warranted.
Therefore, a clear distinction between systematic (e.g. unbiasedness) and non systematic
(e.g. multi modality and lack of symmetry) forecast error distribution behaviors comes up,
being the later more general and thus preferable than the former.

Under concave loss L(·) and forecast error distribution symmetry and unimodality,
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the most common measure of forecast “accuracy” relates to expected loss minimization.
Let {Xi1,Xi2, . . . ,Xin} be k size n sets of paired samples of forecast errors arising from
i = 1, 2, . . . , k forecast procedures denoted M1,M2, . . . ,Mk,. Forecast alternative Mi

is said to be “more accurate” than Mj 6= Mi if E[L(Xi,t)] < E[L(Xj,t)], which guides
the hypotheses (1) and (2). It is also said that Mi is the “most accurate” among all k
alternatives if it is “more accurate” than any other alternative.

However, loss optimality is not the only way to measure forecast “accuracy’. In
fact, expected loss summarizes the behavior of the distribution of forecast errors through
its first moment only, which may lead, once again, to non-systematic loss deviations that
depend on the shape of the distribution of error losses. Therefore, a stronger measure of
“accuracy” can be obtained by comparing loss distributions as a whole.

We propose to test for loss stochastic order instead of expected losses. More formally,
we say that Mi is “strictly more accurate” than Mj 6= Mi if L(Xi,t) ≺ L(Xj,t) where ≺
means L(Xi,t) is of strictly smaller stochastic order than L(Xj,t), where “strict stochastic
order” is defined as

P [L(Xi,t) > x] < P [L(Xj,t) > x] ∀x ∈ R, (3)

P [L(Xi,t) > x] = 1 − Gi(x), and Gi(x) is the cumulative distribution function of the
loss applied to the forecast errors of Mi. It is known that L(Xi,t) ≺ L(Xj,t) implies
E[L(Xi,t)] < E[L(Xj,t)] but the opposite implication is not warranted, and that (3) is
equivalent to

Gj(x) < Gi(x) ∀x ∈ R (4)

For instance, if L(·) ≥ 0 and the bulk of the continuous densities gi and gj corre-
sponding to Gi and Gj locate around a point X0 > 0, when gi is higher than gj around
the bulk, and the tail of gj is greater than the tail of gi, Mi has a higher frequency of
low losses than Mj , and Mj has a higher frequency of high losses than Mi. Therefore, ≺
optimality of Mi with respect to Mj depends on the relative frequency of losses on subsets
of the support of L, in sharp contrast with the comparison of expected losses, which are
systematic features of loss distributions5.

Summarizing, we argue that the behavior of forecasts should not only be evaluated
through the comparison of systematic features of forecast error distributions (e.g. unbi-
asedness) and expected error losses (e.g. expected losses), but through the comparison
of non systematic distributional features. This way, forecast comparison has to do with

5The statistical term “stochastic order” is known to labor economists as first order “stochastic dom-
inance” who apply it to welfare comparison among populations as in Davidson (2008). In this context,
several tests for first and higher order, i.e. restricted, stochastic dominance have been developed, which
have not been considered in this work since their test statistics have asymptotic rather than exact small
sample known distributions under the null. See Davidson and Duclos (2013), for instance.
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relative frequencies of forecast errors and error losses on subsets of their corresponding
supports rather than on systematic distributional features like moments. Therefore, non
systematic features like unimodality, symmetry and loss stochastic order play a key role in
forecast evaluation.

Testing the unconditional distribution of forecast errors: In order to test for the
desired non systematic behavior of forecast error distributions discussed in 2, available
test for distribution symmetry, unimodality and (under square loss) zero location were
chosen. For these tasks we prefer non-parametric exact small sample distribution test
statistics whenever they are available as they may have superior properties than parametric
or asymptotic tests. Our choices are as follows.

1. Mira (2010) proposed a test to detect density lack of symmetry about an unknown
measure of location, µ. Under the assumption that X1,X2, . . . ,Xn is an i.i.d. sample
from a population with c.d.f. F (x) = F0(x− µ̃), the null H0 : F0(x) = 1−F0(−x) for
all x ∈ R is rejected when |γ1(Fn)| ≥ an

n1/2Sc(γ1, Fn), where γ1 = 2(X2−Xs:n), X2 and
Xs:n are the sample mean and median, respectively, an −→ z1−α/2 as n −→ ∞ with
z1−α/2 being the 1−α percentile of the standard normal distribution, and S2

c (γ1, Fn)
being a weakly consistent estimate of the asymptotic variance of γ1.

2. In turn, Hartigan and Hartigan (1985) dip test seems to be one of the few options
to test for distribution unimodality. This test measures multimodality in a sample
by calculating the maximum difference between the empirical distribution function
and a unimodal distribution function that minimizes this maximum difference. This
maximum difference helps test the null of unimodality against multi modality.

3. Under square loss, optimal forecast error distribution should be located around zero,
and therefore Wilcoxon (1945) one sample zero location (mean/median) test, H0 :
µ = 0, under random sampling might be used. The null is rejected when the signed
rank sum statistic W ≥ w1−α/2,n, where w1−α/2 is the 1−α/2 percentile of Wilcoxon
(1945) W distribution.

3 A forecast ability test based on stochastic order

3.1 A stochastic order test

Let (X11,X12, . . . ,X1m1
),. . . , (Xi1,Xi2, . . . ,Ximi),. . . , (Xk1,Xk2, . . . ,Xkmk

), be k samples
of size m1,m2, . . . ,mi, . . . ,mk, randomly drawn from independent populations with arbi-
trary and continuous cumulative distributions F1(x), F2(x), . . ., Fi(x), . . ., Fk(x) respec-
tively. Jonckheere (1954) proposed a joint non parametric exact small sample distribution
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test for the null hypothesis of distribution equality

H0 : F1(x) = F2(x) = . . . = Fk(x) = F (x), ∀x ∈ R (5)

against the alternative of a pre-established stochastic order determined by the first subindex,
i in Xij ,

H1 : Fk(x) < Fk−1(x) < . . . < F1(x), ∀x ∈ R (6)

which is equivalent to
H1 : X1 ≺ X2 ≺ . . . ≺ Xk

The null (5) is rejected whenever S > s1−α, where s1−α is the 1 − α percentile of
Kendall (1962) S distribution. Jonckheere (1954, sec. 4) describes the calculation of the
exact distribution percentiles.

To calculate Jonckheere’s test statistic, let

piαijαj =

{
1 if Xiαi < Xjαj

0 if Xiαi > Xjαj

for i = 1, . . . , k − 1; j = 1 + i; αj = 1, . . . ,mj,

pij =

mi∑

αi=1

mj∑

αj=1

piαijαj ,

and then

S = 2

k−1∑

i=1

k∑

j=i+1

pij −
k−1∑

i=1

k∑

j=i+1

mimj (7)

Some care is to be exercised when interpreting the results of this test. When the null
is rejected, stochastic order exists for the particular order the alternative was set up. Non
rejection of the null, however, can not be interpreted as distribution equality directly as it
may also mean that a different stochastic order is present, no stochastic order exists at all,
or stochastic order exists only among subsets of the k alternative procedures. Therefore,
further exploration might be required if the null is not rejected for a particular order of
the k forecast alternatives.

3.2 Maximum and multiple comparison forecast performance tests based

on stochastic order

An important drawback of Jonckheere’s test is that the stochastic order under the alter-
native is already known, which is not generally true. Thus, a procedure to uncover the
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unknown stochastic order is required. Acknowledging that forecast evaluation can be un-
derstood as a one way analysis of variance, a test for the existence of joint stochastic order
might provide the answer.

We customize Jonckheere’s test for this task in the following way. Let G1, G2, . . . , Gk

be the c.d.f. of the random variables L(X1), L(X2), . . . , L(Xk) for a concave loss function
L(·). We propose to test the null of distribution equality

H0 : G1(l) = G2(l) = . . . = Gk(l) = G(l), ∀l ∈ R (8)

against the alternative

H1 : Gik(l) < Gik−1
(l) < . . . < Gi1(l), for some (i1, i2, . . . , ik) ∈ P, ∀l ∈ R (9)

which is equivalent to test for stochastic order among the k procedures

H1A : L(Xi1) ≺ L(Xi2) ≺ · · · ≺ L(Xik), for some (i1, i2, . . . , ik) ∈ P

where
P = {(i1, i2, . . . , ik) : (i1, i2, . . . , ik) is a permutation of (1, 2, . . . , k)} (10)

To test these hypotheses we propose the statistic

SJKMax = max
(i1,i2,...,ik)∈P

SJK,(i1,i2,...,ik) (11)

where SJK,(i1,i2,...,ik) is the Jonckheere’s test statistic in equation (7) for the particular
permutation (i1, i2, . . . , ik).

Under the assumption that the k! Jonckheere’s test statistics SJK,(i1,i2,...,ik) are a

random sample, the exact distribution under the null becomes FSJKMax
= Hk!

S where H is
Kendall (1962) S distribution above. However, since the random sample assumption might
be too strong in this case, further correction will be dealt with in the simulations.

This test provides more information than Mariano and Preve (2012) joint test. In
fact, since JKMax test runs over all possible permutations, in case of rejection the permu-
tation corresponding to the maximum Jonckheere’s test statistic becomes the more likely
joint stochastic order whereas in case of rejection of Mariano and Preve (2012) null, further
exploration is required through other types of tests.

However, (9) might be too strong in real life situations, which leads us to assume
that stochastic order happens only for subsets of the k forecast alternatives. To uncover
which of these k procedures might be of lower stochastic order, we also propose a multiple
comparisons test over the k alternatives. This test follows a straightforward application
of (5) and (6) for all possible pairs of alternative forecast procedures, correcting the test
significance through a Bonferroni procedure.
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4 Results

In this section we report power comparisons between Mariano and Preve (2012) and our
tests under two settings; (i) dt follows an independent, e.g diagonal, VAR(1) process as
in Giacomini and White (2006, sec. 5.2.1), and (ii) dt follows a heterogenous serially
correlated and correlated MA(q) process as in Mariano and Preve (2012). We customized
the the later in such a way that mean losses are increasing and equally spaced under the
alternative. In addition to power comparison, we illustrate the use of our procedures on a
real world forecast problem.

4.1 Power comparison under GW simulation

Giacomini and White (2006, sec. 5.2.1) proposed an AR(1) model for ∆LT,t:

∆Li,T,t+1 = µi(1− ρ) + ρ∆Li,T,t + εt+1, εi,t+1 ∼ N(0, 1) (12)

for i = 1, 2, 3, . . . , k − 1, where T is the sample size used to obtain the n forecasts we
analyze. We set µ1 = κ and µi = µ for i = 2, 3, . . . , k − 1 such that expected losses are
increasing and equally spaced,

E [Lt+1] = [E(Li,T,t+1)]k×1 = [κ, κ + µ, κ+ 2µ, . . . , κ+ (k − 1)µ]T (13)

for a suitable constant κ > 0 we set at κ = 10.

The size corrected power function of a given test, K(µ) = P [Reject the null | µ], was
estimated as the frequency of rejections under alternative values of µ ∈ {0, 0.05, . . . , 1} in
the following way. Given specific values of ρ ∈ {0, 0.25}, k ∈ {2, 3, 4} and n ∈ {12, 30, 100},
100.000 samples were simulated from (12) under the null, µ = 0, and the frequency of
rejections was computed. Whenever this frequency differs from the pre-established test
size α = 0.05, the critical value was corrected so that K̂(0) = α̂ ≈ α as close as possible,
thus equalizing the size of all tests in order to compare their power6. Then, 100.000 samples
were simulated from (12) under each alternative µ ∈ {0.05, . . . , 1}, and the size corrected
power function was finally estimated as

K̂ (µ) =
# of rejections

100000
∀µ ∈ {0, 0.05, . . . , 1} (14)

6Since JK test statistic is discrete, reaching 0.05 is not possible for small n. In this case the tests sizes
were corrected as close as possible to 0.05.
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4.1.1 The power of joint tests

Figures B.1 to B.3 display the power of the JKMax and MP tests for k = 2, 3, 4 respectively.
Figure B.1 reveals that these tests are not only unbiased, but also that power increases
as the sample size increases, with an important power gain when n = 100. In the same
way, this figure also shows that power deteriorates as ρ increases to 0.25, showing that
both tests, JKMax and MP are equally non-robust to slight forecast error autocorrelation.
Moreover, there is no difference whatsoever between the performance of JKMax and MP
tests regardless of the fact that JKMax test is stronger and has stronger assumptions than
MP.

Figure B.2 reveals a similar picture as B.1 in terms of power unbiasedness and behav-
ior as n and ρ increase. However, an important feature arises by comparing these figures.
For n = 12 the power of JKMax test is slightly higher than the power of MP test, but this
difference vanishes as n increases. Moreover, the power reduction as ρ increases is similar
for both tests and JKMax’s power is never lower than MP’s. Therefore, JKMax seems to
be more powerful than MP for small samples.

Figure B.3 depicts a similar behavior of the test as the preceding ones. However,
by comparing it to the previous figures, it shows three important features. First, JKMax
is more powerful than MP for small and moderately small samples, and this difference
increases with k. Second, JKMax’s power is slightly higher than MP’s power when n = 30
and ρ = 0.25. And third, the power of both tests increase as k increases.

Summarizing, under the simulation set up of Giacomini and White (2006), JKMax
is as powerful as MP test. More specifically, both tests share the same features as it
comes to unbiasedness and behavior as n, ρ and k increase. However, JKMax test is more
powerful than MP for small samples, n = 12, and the power difference increases with k.
Finally, JKMax test seems to be slightly more powerful than MP for moderate n, high
auto-correlation and a big number of forecast alternatives.

4.1.2 The power of multiple comparisons tests

Figures B.4 and B.5 depict the minimum, average and upper bound power functions of
the JK and MP multiple comparisons tests, for k = 3, 4 and n = 12, 30, 100. Multiple
comparisons were carried out by testing the null H0 : E[Li] = E[Lj ] against the alter-
native H1 : E[Li] 6= E[Lj ] in the case of the MP test, and H0 : GLi = GLj against
H1 : Li ≺ Lj for Jonckheere’s test, where the ordered pair (i, j) run along all possible
values (i, j) ∈ {(i, j) : i < j i, j = 1, 2, . . . , k}. From the power of these tests we calcu-
late the minimum and average powers. The upper bound power, in turn, is calculated as
the minimum between the upper bound Bonferroni correction and the maximum attained
rejection probability, 1. The minimum, average and maximum powers are identified by
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the suffixes Min, Avg and Ub respectively in figures B.4 and B.5. This way of presenting
multiple comparison power tests relates to Spjotvoll (1972).

Figures B.4 and B.5 share the following features. First, JK related powers are always
higher than the corresponding versions of MP tests. Second, the power of these tests
increase with n. And third, there is a uniform autocorrelation related power reduction
on both tests. Moreover, power increases with k uniformly, but power differences reduce
as k increases. These results are similar to the findings in section 4.1.1 except for the
fact that JK seems to be uniformly most powerful than MP regardless of the degree of
autocorrelation.

4.2 Power comparison under MP simulation

Mariano and Preve (2012) consider the case when the loss difference vector dt = ∆Lt

follows the k−dimensional MA(q) process with Gaussian noise given by

dt = µ+ ǫt +

q∑

i=1

Ψiǫt−1, (15)

where ǫt ∼ N(0,Σ), Σ = ρ1 − (ρ − 1)I, where 1 and I are k × k unity and identity
matrices, respectively, 0 ≤ ρ < 1, Ψi = ψiA, where A is a k × k diagonal matrix with
diagonal entries ajj = 1/

√
j for j = 1, 2, . . . , k − 1.

We consider the following parameter values in our simulations; ρ = 0, 0.5, 0.75, ψ =
0.5, q = 0, 1, 2 and k = 2, 3, 4. In addition, we set up increasing equally spaced mean losses
as in equation 13, that is,

E [Lt] = [κ, κ+ µ, . . . , κ+ (k − 2)µ, κ + (k − 1)µ]T

for µ = (0, 0.05, . . . , 1) as in section 4.1.

4.2.1 Power of joint tests

Figures B.6 and B.7 display the power of the joint JK and MP tests under. These figures
reveal that power differences are very slight and favor the joint MP test for q = 0, 1.
However, the power of the joint JK test is higher than the power of the joint MP test when
q = 2, and the power gap increases with k but reduces as correlation increases. Therefore,
the joint MP test is slightly better than the joint JK test when the MA order is low,
q = 0, 1, but interestingly the joint JK test becomes better than the joint MP test when
q = 2. However, the power gap reduces as correlation increases.
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4.2.2 Power of multiple comparisons tests

In the same way, Figures B.8 and B.9 depict the power functions of multiple comparisons
tests based on JK and MP tests. These figures might suggest that multiple comparisons
tests based on the JK test are more powerful than multiple comparisons tests based on
MP. Moreover, the power gap in favor of JK based tests widen as the order of the MA
process increases as well as when correlation increases.

4.3 A real world application

4.3.1 Background

When forecasting the medium term inflation rate Banco de la República, the Colombian
Central Bank, attaches great importance to the behavior of inflation over the short run. In
fact, the bank combines the forecast of two sets of models in the following way. The “best”
Short Run inflation Forecast, SRF, is obtained from a suit of small non structural models,
and the medium term forecast is obtained from big structural models by constraining their
forecast to cross the SRF at the corresponding horizon thus improving the medium term
official forecast performance. Therefore, a key input for the medium term central bank
inflation forecast in this country is the SRF.

The suit of models used to obtain the SRF contains a series of total and core in-
flation forecasts that arise from inflation forecasts of CPI sub baskets. These sub baskets
include each CPI item separately, the main item groups like food, housing, clothing and
miscellaneous, the tradable and non-tradable baskets, as well as the basket of administered
price items. From these forecasts several aggregated inflation and core inflation forecasts
are built using their corresponding weights. We consider initially k0 = 6 forecast alterna-
tives for the inflation rate, which are denoted as G6, Artes, Combik, Ave m, TRUNC and
Agre ic, as described in Mart́ınez and González (2014). Since our interest lies on the SRF,
we consider n = 30 consecutive forecasts at a horizon of h = 3 months, where the number
3 appears as a procedure name suffix in the remaining graphs and tables.

4.3.2 Testing the distribution of forecast errors

According to our proposal we explore first the shape of the distribution of forecast errors.
This is performed in figure B.10 and Table A.1. Figure B.10 contains the kernel estimate
of the forecast error density of the k0 forecast alternatives described above. From this
figure we may see that most of the densities seem to be centered around zero with slight
skewness either way, and they look unimodal and seem to have a similar support. However,
it can also be observed that G6 3 ’s forecast error density might be off centered and non
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symmetric, leading to systematic and non systematic positive forecast errors. However,
these figures might not be as informative as proper tests, which we show in Table A.1.

Under square loss, L(Xit) = X2
it, Table A.1 summarize the results of the tests for

desirable forecast error distribution behavior. This Table contains the p-values for the zero
location, symmetry and unimodality tests described in section 2. At a 5% significance level
the null of zero location is rejected by G6 3, leading to discard this forecast alternative.
The results in this Table show that there is not enough evidence to reject the remaining
forecast alternatives, although the small zero location test p-values related to Artes3 and
Ave m3 might raise some concern. Therefore, from the initial k0 = 6 forecast alternatives,
G6 3 ’s non systematic forecast error behavior leaves us with just k = 5 forecast procedures.

To begin the exploration of the remaining forecast alternatives, we summarized in
Table A.2 some elementary forecast statistics. In this Table it can be observed that mean
forecast errors can be as high as 13 basis points, and RMSE reach up to 39 basis points,
with slightly lower MAE’s of up to 33 basis points. According to RMSE the best forecast
alternative might be Agre ic 3 and the worst Combik 3. However, according to MAE the
best forecast alternative is Agre ic 3 and the worst are Combik 3 and Ave m3. With
these statistics at hand, there is not much to say about forecast performance as they lack
significance interpretation.

4.3.3 Testing for performance order

We start by exploring the existence of a strict stochastic order among the losses of the
k = 5 remaining alternatives along with the exploration of expected error loss differences
in Table A.3. The panel “Model” in this table shows the more likely stochastic order
suggested by the permutation that reached the maximum JK statistic. In this case the
best forecast alternative coincides with previous results but the worst does not. However,
as the “Test” panel of the table reveals, the null is not rejected, thus this particular order
might not be significantly different from any other, e.g. the one suggested by the RMSE
and MAE statistics. It can also be observed in this panel that the joint MP test is not
rejected, which suggests that there is no sample evidence in favor of any of the procedures
having significantly different expected losses than any other.

To explore these results further, we go on testing the multiple comparisons among the
k = 5 alternative procedures through JK and MP tests in Table A.4. Pairwise comparisons
based on JK are one sided, so the upper panel shows all off diagonal p-values corresponding
to the alternative H1 : L(Xi) ≺ L(Xj) where (i, j) are the positions in the matrix. Pairwise
comparisons based on the MP test, in turn, are two sided and thus only the upper triangular
elements of the panel contain the p-values for the alternative H1 : E[L(Xi)] 6= E[L(Xj)].

At a 5% level the results in Table A.4 show that Agre ic 3 has a stochastically lower
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loss than Combik 3, Ave m3 and TRUNC3. At a 10% level it also shows that Artes3
has a stochastically lower loss than Combik 3, Ave m3 and TRUNC3. At any of these
levels Agre ic 3 and Artes3 loss distribution is not significantly different, and the loss
distributions of Combik 3, Ave m3 and TRUNC3 are also equal. Therefore at a 10% level
two well differentiated groups are identified by multiple comparisons based on JK. However,
no difference was found among the procedures according to MP tests.

These findings are summarized in Figure B.12 as it is customarily reported in one
way analysis of variance. A line joining two forecast procedures means that the null of
equal distribution was not rejected for either alternative stochastic order, M〉 ≺ M| or
M| ≺ M〉. In addition, a disjoint line among two alternatives means that the null of equal
distribution against a particular stochastic order was rejected, lets say M〉 ≺ M|, where
forecast procedures are located in such a way that i < j. Therefore, Figure B.12 contains
the same information as Table A.4.

In order to understand these findings, Figures B.11 and B.13 show the kernel loss
density estimate and the kernel loss distribution estimate. Figure B.11 compares the density
of Agre ic 3 losses with the loss density of the remaining forecast alternatives.From the
upper left panel of this Table, it seems to be clear why the distribution of Agre ic 3 and
Artes3 are not significantly different. In fact, the bulk of these densities is quite similar
and the tails are somewhat similar as well, with a little bump to the right of Artes3 loss
density. It is also clear why Agre ic 3 loss is stochastically smaller than the other three
alternatives. The bulk of the remaining alternatives is less protruding than the bulk of the
density of Agre ic 3 loss, which induces a relatively heavier right tail.

Furthermore, Figure B.13 shows the same picture, but this time we can relate these
distributions in terms of 6. The highest distribution seems to be that of Agre ic 3 loss,
followed closely by the distribution of Artes3. The other three distributions are not distin-
guishable but on some part of the tail.

Finally, the results of this exercise show the advantage of JK tests under small sam-
ples. Mariano and Preve (2012) related tests did not detect any difference whatsoever
among the whole set of forecast alternatives considered. However, JK related tests not only
detected significant differences at 5%, but also determined two clearly specified groups of
procedures. These groups characterize for having no stochastic order within and a clear
stochastic order between them, thus providing a clear performance picture among them.

5 Conclusion

Traditional forecast disagreement statistics like RMSE, MAE, MAPE, sMAPE, MASE,
Theil’s U, etc., lack statistical significance interpretation, which led statisticians to look for
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formal statistical tests. Mariano and Preve (2012) and Giacomini and White (2006) took
on this task and proposed tests for the null of expected loss equality. However, there is much
more to forecast evaluation than just testing for loss moment order. In order to avoid non
systematic errors the distribution of forecast errors should be symmetric and unimodal,
and the distribution of error losses should be the highest among forecast alternatives.
Therefore, in addition to testing for forecast error density symmetry and unimodality, we
propose to test for stochastic loss order rather than loss moment order as usually proposed
in previous works, e.g. Mariano and Preve (2012) and Giacomini and White (2006).

By acknowledging the similarities between forecast performance evaluation and one
way analysis of variance, we propose two test alternatives. The first tests for strict joint
stochastic order among all k forecast procedures through the maximum Jonckheere (1954)
test statistic over all possible permutations of the k alternatives. Whenever the null hy-
pothesis is rejected, the permutation corresponding to the maximum provides the more
likely stochastic order.

However, if the null is not rejected, several different stochastic orders might not be
significantly different from each other and thus further exploration is required. We propose
to perform this task through multiple (i.e. pairwise) comparisons, which provides a clear
picture about the performance of the k forecast procedures.

In order to compare our proposals with previous work, simulations were carried out
under the settings studied by Giacomini and White (2006) and Mariano and Preve (2012).
Under Giacomini and White (2006) loss differences are independent AR(1) processes while
under Mariano and Preve (2012) the vector of loss differences is a heterogenous VMA(q)
process. We customized mean loss differences to be consistent with increasing equally
spaced mean losses as in Giacomini and White (2006).

Power function comparison shows that JK based tests are at leat as powerful as MP
based tests, and under particular circumstances are significantly better. More specifically,
the joint JKMax tests is more powerful than MP’s under the Giacomini and White (2006)
set up especially for small samples and high auto correlation. In addition, under the same
simulation setup multiple comparison tests based on JK seem to be more powerful than
those based on MP regardless of any other parameters. However, power differences reduce
with sample size. Moreover, JK related tests dominate uniformly MP related ones under
the MP simulation setup. More precisely, JK joint tests are at least as powerful as MP
joint tests under MP’s setup, and become significantly better in small samples, high order
MA loss differences and a high number of forecast procedures to be tested. In the same
way, JK multiple comparison tests seem to dominate MP related ones under MP’s setup.

Therefore, we conclude that JK based tests are more powerful than MP based ones
particularly for small samples and high moving average orders under Mariano and Preve
(2012) setting. Under Giacomini and White (2006) settings JK tests are at least as powerful
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as MP tests, and there is also clear dominance for small samples and high auto correlations.
Moreover, the power difference among these tests increases with the number of forecast
alternatives considered and reduces with the sample size.

Furthermore, the forecast evaluation illustration of the procedures proposed show
that JK related tests are more sensitive than those derived from MP as the later did not
detect any difference whatsoever among the forecast alternatives considered. As a matter
of fact, JK related tests found significant differences at a 5% level, and at 10% they detected
the existence of two clearly differentiated groups of alternatives. These groups characterize
for having no stochastic order within and a very clear stochastic order between them, thus
providing a clear forecast performance picture of the alternative procedures. This finding
is remarkable as well, given that stochastic order is much more stronger than expected loss
order. Finally, by acknowledging that forecast evaluation is similar to a one way analysis of
variance, results can be nicely reported using multiple comparison graphs as Figure B.12.
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Table A.1: Testing the shape of forecast errors

Test
Model Zero location Symmetry Unimodality

Agre ic 3 0.1048 0.5744 0.3161
Artes3 0.0636 0.1051 0.6635
Combik 3 0.1403 0.3297 0.5296
Ave m3 0.0636 0.0967 0.7133
TRUNC3 0.0803 0.0949 0.9044
G6 3 0.0002 0.3310 0.5498

Source:Authors’ calculations

Table A.2: Mean forecast errors, ME, root mean square errors, RMSE, and mean absolute
errors, MAE

Model ME RMSE MAE

Agre ic 3 -0.09 0.29 0.24
Artes3 -0.13 0.34 0.26
Combik 3 0.11 0.39 0.33
Ave m3 0.12 0.38 0.33
TRUNC3 0.11 0.37 0.32

Source:Authors’ calculations

Table A.3: Joint JKMax and MP loss order tests

Model Test
1 2 3 4 5 JK MP

Agre ic 3 Artes3 Combik 3 Ave m3 TRUNC3 0.15 0.50

Source:Authors’ calculations

Table A.4: Multiple comparisons tests

Model
Test Model Agre ic 3 Artes3 Combik 3 Ave m3 TRUNC3

JK Agre ic 3 0.45 0.03 0.02 0.02
Artes3 0.54 0.08 0.06 0.06
Combik 3 0.97 0.92 0.43 0.43
Ave m3 0.98 0.94 0.56 0.49
TRUNC3 0.98 0.94 0.56 0.50

MP Agre ic 3 0.48 0.13 0.15 0.16
Artes3 0.60 0.69 0.80
Combik 3 0.86 0.49
ave m3 0.46

Source:Authors’ calculations
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Figure B.1: Power of JKMax and MP=GW for k = 2: ρ = 0 (left panel) and ρ = 0.25 (right panel)
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Figure B.2: Power of JKMax and MP for k = 3: ρ = 0 (left panel) and ρ = 0.25 (right panel)
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Figure B.3: Power of JKMax and MP for k = 4: ρ = 0 (left panel) and ρ = 0.25 (right panel)
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Figure B.4: Power of JK and MP multiple comparisons tests for k = 3: ρ = 0 (left panel) and ρ = 0.25
(right panel)
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Figure B.5: Power of JK and MP multiple comparisons for k = 4: ρ = 0 (left panel) and ρ = 0.25 (right
panel)
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Figure B.6: Power of JK and MP joint tests for n = 30 and k = 3: ρ = 0 (left panel), ρ = 0.5 (middle
panel) and ρ = 0.75 (right panel) under ordered samples
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Figure B.7: Power of JK and MP joint tests for n = 30 and k = 4: ρ = 0 (left panel), ρ = 0.5 (middle
panel) and ρ = 0.75 (right panel) under ordered samples
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Figure B.8: Power of JK and MP multiple comparisons tests for n = 30 and k = 3: ρ = 0 (left panel),
ρ = 0.5 (middle panel) and ρ = 0.75 (right panel) under ordered samples
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Figure B.9: Power of JK and MP multiple comparisons tests for n = 30 and k = 4: ρ = 0 (left panel),
ρ = 0.5 (middle panel) and ρ = 0.75 (right panel) under ordered samples
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Source:Authors’ calculations

Figure B.10: Kernel forecast errors density for alternative forecast errors
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Figure B.11: Kernel loss density estimate for alternative forecast procedures
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Figure B.12: Multiple comparison stochastic order results through JK pairwise tests

Source:Authors’ calculations
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Figure B.13: Kernel distribution loss estimate for alternative forecast procedures
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