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Abstract 

We implement a modified version of DebtRank, a measure of systemic impact inspired in 

feedback centrality, to recursively measure the contagion effects caused by the default of a 

selected financial institution. In our case contagion is a liquidity issue, measured as the 

decrease in financial institutions’ short-term liquidity position across the Colombian 

interbank network. Concurrent with related literature, unless contagion dynamics are 

preceded by a major –but unlikely- drop in the short-term liquidity position of all participants, 

we consistently find that individual and systemic contagion effects are negligible. We find 

that negative effects resulting from contagion are concentrated in a few financial institutions. 

However, as most of their impact is conditional on the occurrence of unlikely major 

widespread illiquidity events, and due to the subsidiary contribution of the interbank market 

to the local money market, their overall systemic importance is still to be confirmed. 
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1 Introduction 

One lesson from the Global Financial Crisis is that the soundness of each financial institution 

does not ensure the stability of the financial system, per se. Likewise, it has been put forward 

that financial institutions’ liquidity is not ensured by the liquidity position of each single 

institution, but that their interconnections may determine whether they are able to fulfill their 

short-term liquidity needs. In this sense, as Allen and Gale (2000) noted, interconnections 

between financial institutions determine the possibility and extent of financial contagion. 

Financial institutions’ interconnections comprise direct and indirect linkages (Allen and 

Babus, 2009). Direct linkages are related to mutual exposures acquired in financial markets 

(e.g. interbank lending, securities and foreign exchange settlements), whereas indirect 

linkages correspond to holding similar portfolios (as in fire-sales) or sharing the same mass 

of depositors (as in deposit runs). We focus on direct-linkage contagion. 

Despite differing in their specific features and assumptions, most direct-linkage contagion 

simulation models focus on how defaults on mutual exposures may erode financial 

institutions’ solvency by affecting their capital buffer.5 Theoretical works use artificial 

networks to investigate how financial systems’ structure and capitalization affect systemic 

risk (see Nier, Yang, Yorulmazer, and Alentorn (2007), and Gai and Kapadia (2010)). They 

find that contagion decreases with capitalization, but increase with concentration or with the 

size of interbank liabilities. About connectivity, they find that the relationship with contagion 

is non-monotonic: when connectivity is low (high), an increase in the number of links 

increases (decreases) the likelihood of knock-on defaults. Roukny, Bersini, Pirotte, 

Caldarelli, & Battiston (2013) find that the network topology matters only –but substantially- 

when financial markets are under stress (e.g. illiquid). 

Furfine (2003) is among the first to study contagion by examining actual interbank exposure 

data. Furfine’s main finding is that bilateral interbank exposures in the U.S. are neither large 

enough nor distributed in a way to cause a great risk of contagion by capital exhaustion, with 

                                                           
5 See Upper (2011) for a comprehensive review on interbank contagion simulation methods prior to 2010. 



2 
 

very few cases of knock-on effects arising from a financial institution failing. The number 

and capitalization of counterparties are identified as key determinants of contagion. As 

reported by Upper (2011), most extensions and enhancements after Furfine (2003) point out 

that direct contagion based on actual interbank exposures is likely to be rare, and it can only 

happen if interbank exposures are large relative to lender’s capital. 

A recent development on direct-linkage contagion simulation models is DebtRank (Battiston, 

Puliga, Kaushik, Tasca, & Caldarelli, 2012). Inspired by feedback centrality, DebtRank 

recursively measures the impact of the default of a selected financial institution on the capital 

buffer of financial institutions across the entire financial network. DebtRank serves to 

determine the size of contagion caused by the initial default of a financial institution, besides 

providing an assessment of the systemic importance of each financial institution based on the 

severity of its impact over the system. However, unlike previous direct-linkage contagion 

models based on default cascade dynamics, the impact from default is not limited to those 

cases in which the capital buffer is exhausted: partial impact on solvency is quantified and 

accumulated recursively. Some implementations of DebtRank on actual data are available 

(e.g. Tabak, Souza, and Guerra (2013), Battiston, Caldarelli, D’Errico, and Gurciullo (2015), 

Poledna, Molina-Borboa, Martínez-Jaramillo, van der Leij, and Thurner (2015)). 

Most research on direct-linkage contagion focus on contagion the subsequent failure of other 

financial institutions by means of capital buffers exhaustion (i.e. a solvency issue). 

Nevertheless, liquidity is a key factor as well. Furfine (2003) concludes that the liquidity 

effect, in the form of the unwillingness to lend money due to the inability to borrow, may be 

greater than the solvency effect in the U.S. interbank markets. Müller (2006) concludes that 

direct linkages affect solvency and liquidity substantially in the Swiss interbank market, and 

that both sufficient capital and liquidity buffers are necessary to mitigate spill-overs. Cepeda 

and Ortega (2015) find that liquidity contagion in the Colombian large-value payment system 

is mitigated when considering the stock of high-quality assets available as a potential source 

of liquidity. 

We implement a modified version of DebtRank in order to recursively measure the impact 

of the default of a selected financial institution on the short-term liquidity position of 

financial institutions across the entire interbank network. We construct the financial network 
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based on actual interbank (i.e. non-collateralized) data from the Colombian financial market. 

We use the local version of the Liquidity Coverage Ratio (LCR)6, the Liquidity Risk Indicator 

(𝐼𝑅𝐿 by its acronym in Spanish), as the initial short-term liquidity position of financial 

institutions. Our modified version of DebtRank allows for determining the size of short-term 

liquidity contagion caused by the default of a designated financial institution, and for 

assessing the systemic importance of each of these institutions based on the severity of its 

impact over the short-term liquidity of the system. 

Consistent with most related literature (e.g. Furfine (2003), Upper (2011), Roukny et al. 

(2013)) we find that –ceteris paribus- in the Colombian interbank market contagion effects 

are not a threat to the stability of the system by themselves. Unless a major –but unlikely- 

drop in the short-term liquidity position of all participants precedes contagion, we find that 

contagion effects are rather small. It is most likely that the small size of Colombian interbank 

market exposures with respect to the short-term liquidity position of financial institutions 

(about 1.5% of 𝐼𝑅𝐿), along with the subsidiary contribution of interbank loans to liquidity 

exchanges between financial institutions (about 9.68%), may explain why contagion effects 

alone are trivial.  

Our results support a salient feature of past financial crisis reported by Upper (2011): the vast 

majority of banking crisis followed shocks that hit several banks simultaneously rather than 

domino effects from idiosyncratic failures. Our methodological proposal provides a 

quantitative assessment of financial institutions’ systemic importance based on their potential 

contagion effect in the short-term liquidity position of the remaining financial institutions 

across the Colombian interbank network. Moreover, based on the potential effect on the 

system’s liquidity, our results may provide a quantitative assessment of the liquidity that 

should be obtained from other available sources in case of a default by a financial institution, 

such as collateralized borrowing (e.g. from other financial institutions or the central bank), 

selling financial assets or increasing deposits. However, as our results are limited to the local 

                                                           
6 The Liquidity Coverage Ratio (LCR) has the purpose of ensuring that each financial institution has an adequate stock of 

unencumbered high-quality liquid assets that can be easily and immediately convertible into cash, in private markets, so as 

to meet its liquidity needs for a stress scenario of thirty calendar days (see BCBS (2013)). 
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interbank market, conclusions are to be weighted according to its contribution to the money 

market and to the size of the financial system. 

 

2 Methodology 

There is a rather recent interest in using network analysis in finance and economics, with 

great emphasis on systemic risk and financial stability. Under this approach financial 

institutions are nodes that participate in a system (e.g. large-value payment, securities 

settlement) or market (e.g. interbank, derivatives), with their exposures or payments as their 

links. In a formal setting, financial institutions as well as their connections are represented in 

a network of mutual claims or flows, with elements arranged in a squared and potentially 

non-symmetric (i.e. non-reciprocal) matrix, with elements in the main diagonal equal to zero 

due to self-connections’ absence or lack of economic interest.  

Several methods or measures pertaining to the realm of network analysis have been used to 

assess the extent to which a default or failure-to-pay by a financial institution may affect 

others in an interconnected environment. A natural choice is to use centrality measures as 

proxies for financial institutions’ systemic importance, and to use such measures to estimate 

their contagion potential in the network under analysis.  

2.1 From centrality to DebtRank 

The simplest measures of centrality, namely degree centrality and strength centrality, 

corresponding to the number of links and their weight, are not particularly useful for 

measuring contagion dynamics. They are local measures of centrality (i.e. non-adjacent 

nodes are not considered), thus they do not serve the purpose of estimating impact in a 

network-wide level. Path dependent centrality measures, namely closeness centrality and 

betweenness centrality, may take into account non-adjacent nodes by calculating how far 

nodes are in terms of the number of links that compose the shortest paths between them, and 

the fraction of those shortest paths that run through each node, respectively. However, 

measuring centrality based on the shortest path between financial institutions may be difficult 

to interpret in a financial contagion context (see Soramäki and Cook (2013)).  
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Feedback centrality refers to all those measures in which the centrality of a node depends 

recursively on the centrality of the neighbors (Battiston, Puliga, Kaushik, Tasca, & Caldarelli, 

2012b). The simplest measure of feedback centrality is eigenvector centrality (Bonacich, 

1972), whereby the centrality of a node is proportional to the sum of the centrality of its 

adjacent nodes. Thus, the eigenvector centrality of a financial institution is the weighted sum 

of all other financial institutions’ centrality at all possible order adjacencies (see Newman 

(2010)). Eigenvector centrality’s analytical value for measuring contagion dynamics is 

illustrated by Soramäki and Cook (2013), who depict eigenvector centrality as the proportion 

of time spent visiting each node in an infinite random walk through the network. Other 

popular feedback centrality measures based on eigenvector centrality are PageRank (Brin & 

Page, 1998), which is the algorithm behind Google’s search engine; hub centrality and 

authority centrality (Kleinberg, 1998); and SinkRank (Soramäki & Cook, 2013). 

All feedback centrality measures share a common drawback when applied to contagion 

dynamics: in presence of a cycle (i.e. a loop) in the network there is an infinite number of 

reverberations of the impact of a node to the others and back to itself, which impedes simple 

and measurable economic interpretations (Battiston et al., 2012). That is, despite they are 

useful by providing relative measures (i.e. scores) of the importance of each node, feedback 

centrality measures fall short when a monetary value of the size of contagion is required.  

DebtRank (Battiston et al., 2012) is a centrality measure inspired in feedback centrality that 

overcomes this drawback by not allowing such infinite number of reverberations through the 

network. By excluding walks in which one or more links are repeated it has a measurable 

economic interpretation (see Appendix 1). As defined by Poledna et al. (2005), it is a quantity 

that measures the fraction of the total economic value in the financial network that is 

potentially affected by the distress of an individual node or a set of nodes. Moreover, 

DebtRank also accounts for the fact that when a default does not propagate in the form of a 

subsequent default there is still a contagion effect in the form of a reduction in the robustness 

(i.e. solvency) of those directly affected, and potentially in the robustness of the entire 

network. These two features allow DebtRank to provide a simple and economically 

meaningful measure of the size of the contagion dynamics following the default of a 

designated financial institution, and a forthright measure of its systemic importance. 



6 
 

Our methodological approach to determine the size of contagion caused by the default of a 

financial institution in an interbank exposures network is closely related to DebtRank. 

However, our approach does not rely on how the exposure among financial institutions may 

affect their capital buffer (i.e. a solvency issue) in case of a default by a designated financial 

institution, but on how it may affect their short-term liquidity. Hence, in our case we measure 

the depletion of short-term liquidity when financial institutions face the failure-to-pay of a 

participant of the interbank claims network. A straightforward byproduct is assessing the 

systemic importance of financial institutions in the local interbank market. 

2.2 The inputs 

Two main inputs are used in our approach: a proxy for the short-term liquidity of financial 

institutions participating in the interbank market, and the actual network of interbank 

financial claims.  

The first input, a proxy for the estimated short-term liquidity position of the 𝑖-financial 

institution (𝑙𝑖), is our individual measure of financial robustness –instead of a proxy for 

solvency. We use the coverage provided by financial institution 𝑖’s high-quality liquid assets 

to meet the estimated net liquidity requirements for a 7-day horizon, as reported by local 

financial institutions to the Colombian Financial Superintendency.7 Hence, 𝑙𝑖(𝑡) denotes the 

estimated short-term liquidity position of financial institution 𝑖 at time 𝑡. 

The calculation of the 𝐼𝑅𝐿 involves the estimation of high-quality liquid assets’ value and of 

net liquid requirements; therefore, its calculation is intricate, with several non-linear 

features.8 Nevertheless, for analytical purposes, we use the reported value of the expected 

short-term liquidity position (𝑙𝑖) as a proxy of the short-term liquidity position of each 

financial institution, and we affect it in a linear manner: say, not collecting $1 in interbank 

loans due to counterparty’s default will decrease the short-term liquidity position by $1. This 

                                                           
7 This proxy corresponds to the 7-day 𝐼𝑅𝐿 (indicador de riesgo de liquidez). 𝐼𝑅𝐿 resembles the LCR by BCBS (2013). It is 

an indicator designed by the Colombian Financial Superintendency to gauge the liquidity risk of financial institutions for 

regulatory purposes. Using the 7-day 𝐼𝑅𝐿 is interesting as it is a rather stringent measure of liquidity, and it is available on 

a weekly basis. An alternative proxy for the short-term liquidity may be the net liquid assets (i.e. liquid financial assets 

minus current liabilities), or some other balance-sheet measure of short term liquidity; however, as balance-sheet is a low-

frequency source of data (e.g. monthly) our choice appears to be superior in terms of opportunity.  
8 See Annex 1 of Colombian Financial Superintendency’s Circular Externa 017 de 2014. 



7 
 

simplification not only allows designing a generalized version of the algorithm, but also 

makes changes in liquidity tractable, while preserving the analytical substance of the model. 

The second main input in our approach is a directed weighted network in which nodes 

represent financial institutions participating in the interbank market, with links representing 

non-collateralized financial claims. Let 𝐶 be the weighted matrix representing the network 

of interbank claims, with 𝐶𝑖𝑗 containing the outstanding amount that financial institution 𝑖 

owes to 𝑗. 

If financial institution 𝑖 is unable to refund an interbank loan to 𝑗, then 𝑗 faces an unexpected 

reduction of its robustness, 𝑙𝑖. It is an unexpected reduction because j could not anticipate i’s 

failure to pay when estimating its short-term liquidity position; that is, 𝑗 had estimated its 

short-term liquidity position under the assumption that 𝑖 would fulfill its commitment to 

refund.9 The unexpected reduction in short-term liquidity faced by 𝑖’s counterparties (i.e. the 

system) is 𝐶𝑖 = ∑ 𝐶𝑖𝑗𝑗 . 

2.3 The dynamics 

Whenever financial institution 𝑖 fails to pay 𝑗 the outstanding amount 𝐶𝑖𝑗 at moment 𝑡, the 

liquidity position of 𝑗 is affected unexpectedly: 𝑙𝑗(𝑡 + 1) = 𝑙𝑗(𝑡) − 𝐶𝑖𝑗. The aftermath of the 

updated short-term liquidity position of 𝑗 depends on the choice of a short-term liquidity 

threshold that allows considering 𝑗 as imposing (or not) a significant risk for the system. Let 

𝛾 be such short-term liquidity threshold, 𝑗 fails to pay its counterparties as a consequence of 

the failure of 𝑖 to refund the outstanding amount 𝐶𝑖𝑗 whenever 𝑙𝑗(𝑡 + 1) < 𝛾. In such case 𝑗 

enters into default (i.e. it is unable to pay), and the process continues recursively. On the 

other hand, if 𝑙𝑗(𝑡 + 1) ≥ 𝛾 𝑗 is affected but it does not default: 𝑗 is able to fulfill its 

commitments to refund its counterparties, but its short-term liquidity position and that of the 

entire system have decreased (i.e. the robustness of 𝑗 and the system has weakened). 

                                                           
9 As customary (see Battiston et al. (2012), Tabak et al. (2013)), because bankruptcy procedures may be rather lengthy, we 

assume that in the short-run there are no losses’ recoveries. Likewise, as netting in interbank borrowing is not a common 

practice in the local market, we also assume that no netting of claims is available; however, netting may be appropriate for 

examining other types of financial exposures, say derivatives. 
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A natural choice for the short-term liquidity threshold is 𝛾 = 0. A financial institution 𝑖 with 

a short-term liquidity position below zero may be considered in the limit of failing to fulfill 

its immediate commitments to pay: liquidating the stock of high-quality liquid assets would 

not suffice to face estimated short-term net liquidity requirements. Technically speaking this 

does not mean that 𝑖 is in default or that it is unable to pay; it may still be able to get new 

funds from other financial institutions or the central bank, to roll-over existing loans or to 

increase deposits. Nonetheless, 𝑙𝑗 < 0 is a rather clear signal of a substantial exposure to 

potential liquidity risk, and it should force certain actions from the financial institution. 

Hence, for analytical purposes, we set 𝛾 = 0 for determining the tipping point of the default 

cascade, the threshold that determines the transition from undistressed to distressed.10 

Formally, analogous to DebtRank, the dynamics are as follows. As before, 𝑙𝑖 is the short-

term liquidity position of financial institution 𝑖, which is a continuous variable with 𝑙𝑖  ∈

[−∞, ∞]. 𝑠𝑖 is a discrete variable with three possible states, undistressed (𝑈), distressed (𝐷), 

and inactive (𝐼), corresponding to institutions able, currently unable (i.e. in default), and 

already unable (i.e. defaulted earlier or with 𝑙𝑖 < 0) to refund their interbank loans, 

respectively (𝑠𝑖 ∈ {𝑈, 𝐷, 𝐼}). Let 𝑙𝑖(0) denote the actual value of 𝑙𝑖 (i.e. the reported 𝐼𝑅𝐿), 𝑥 

be the set of financial institutions unable to pay (i.e. distressed or inactive) at 𝑡 = 1, and 𝛾 

the selected short-term liquidity threshold that determines the ability to pay, the initial 

conditions (𝑡 = 1) are:11 

𝑙𝑖(1) = 𝑙𝑖(0)∀ 𝑖 ∉ 𝑥 𝑠𝑖(1) = 𝑈 ∀ 𝑖 ∉ 𝑥  

  [1] 

𝑙𝑖(1) = 𝛾 ∀ 𝑖 ∈ 𝑥 𝑠𝑖(1) = 𝐷 ∀ 𝑖 ∈ 𝑥  

 

                                                           
10 Technically, a financial institution with a negative 7-day 𝐼𝑅𝐿 may be able to pay its counterparties, and it may be solvent 

as well. Likewise, in DebtRank (Battiston et al., 2012) it is arguable that a financial institution may be viable (e.g. able to 

pay) even after the capital buffer against shocks is exhausted. In fact, as balance sheets are updated on a monthly basis, 

financial institutions may continue to function for days or weeks before the capital buffer is officially reported as exhausted. 

Another case is also possible: as in Müller (2006), solvent financial institutions may find themselves in default because they 

have no liquid assets to refund their borrowing. 
11 This means that at 𝑡 = 1 two types of institutions may be unable to pay. Those selected as unable to pay by forcing their 

state to distressed irrespective of their short-term liquidity position (i.e. designated financial institutions), and those that 

have already a short-term liquidity position below the selected threshold (i.e. 𝑙𝑖 < 0). 
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Afterwards (i.e. 𝑡 ≥ 2), the dynamics of 𝑙𝑖 and 𝑠𝑖 are determined by the specification below 

(in [2] and [3]). As usual, the dynamics depend on the initial conditions, namely the initial 

allocation of robustness (𝑙𝑖(0)), the structure of the interbank claims network (𝐶𝑖𝑗), and the 

initial choice of financial institutions in distress (𝑥). The key in the dynamics is that the sum 

in [2] (i.e. the liquidity impact) arises from those 𝑗 financial institutions that entered in 

distress in the preceding period (i.e. those 𝑗 that are neither undistressed nor inactive). 

𝑙𝑖(𝑡) = 𝑚𝑎𝑥 {𝛾, 𝑙𝑖(𝑡 − 1) − ∑ 𝐶𝑗𝑖

𝑗 | 𝑠𝑗(𝑡−1)=𝐷

} | 𝑡 ≥ 2 [2] 

and   

𝑠𝑖(𝑡) = {
𝐷 if 𝑙𝑖(𝑡) ≤ γ  and  𝑠𝑖(𝑡 − 1)≠𝐼         

𝐼 if 𝑠𝑖(𝑡 − 1) = 𝐷                              

 𝑠𝑖(𝑡 − 1) otherwise.                                     

  [3] 

 

The process continues recursively, and it is repeated for each financial institution with 

commitments to refund. The process for each 𝑖-financial institution stops at time 𝑇 when all 

financial institutions are either inactive or undistressed (i.e. no distressed institutions pending 

to impact the system). The measure of the distress (in [4]) caused by the set 𝑥 is the change 

in the overall short-term liquidity position of the system from 𝑡 = 1 to 𝑇. If 𝑥 is a single 

financial institution, such change is denoted 𝐹𝑖, and it gauges the impact of that 𝑖-financial 

institution in the system’s ability to pay as measured by the variation in the short-term 

liquidity position of its counterparties (i.e. the initial distress in 𝑥 is not considered). In this 

case, the nominal value of 𝐹𝑖 and its contribution to all financial institutions’ impact (𝐹̅𝑖) are, 

respectively, 

𝐹𝑖 = ∑ 𝑙𝑗(𝑇)

𝑗

− ∑ 𝑙𝑗(1)

𝑗

 [4] 

  

𝐹̅𝑖 = 𝐹𝑖 ∑ 𝐹𝑖
𝑖

⁄  [5] 
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As expected, 𝐹𝑖 and 𝐹̅𝑖 provide a straightforward assessment of the systemic importance of 

financial institution 𝑖 in the interbank funds market. The higher the distress caused by a 

financial institution in the robustness of its counterparties (i.e. their short-term liquidity 

position), the greater its systemic importance in the interbank funds market. 

As pointed out by Tabak et al. (2013), it should be noted that adding the systemic importance 

of all financial institutions into a single figure (𝐹 =  ∑ 𝐹𝑖𝑖 ) may not be considered a measure 

of systemic risk or a measure of financial system’s impact. As it is the sum of financial 

institutions’ individual potential stress, it should be considered a proxy for financial system’s 

stress. As usual, a measure of systemic risk would require multiplying the size of the 

individual potential stress (𝐹𝑖) by the probability of its occurrence over a determined time 

horizon (as in Tabak et al. (2013) and Poledna et al. (2015)). 

 

3 The data 

Interbank exposures in 𝐶 are estimated by means of an implementation of Furfine’s algorithm 

(Furfine, 1999) to data from the Colombian large-value payment system (see León, Cely, and 

Cadena (2016)).12 Interbank exposures networks are available with daily frequency for April 

1, 2013 – December 30, 2014 (i.e. 428 observations). During this period 33 financial 

institutions participated in the market13. Despite many other types of financial institutions are 

authorized to borrow and lend in the interbank funds market (e.g. investment funds, broker-

dealer firms), actual participants are credit institutions only. As usual in non-collateralized 

funds markets around the world, most loans have a low time-to-maturity at inception: 78.9% 

are overnight loans, and the average maturity is about 2.6 calendar days. 

Figure 1 exhibits a graph representing 𝐶 for a randomly selected date. Nodes represent 

financial institutions, with their height (width) corresponding to financial institutions’ 

contribution to the total value of claims as a lender (borrower). The direction of the arrows 

represents the existence of an interbank claim (i.e. from the lender to the borrower), whereas 

                                                           
12 Contrasting loans identified by implementing Furfine’s method on Colombian large-value payment system data with 

those consolidated from financial institutions’ reported data suggests that the algorithm performs well, and it is robust to 

changes in its setup (León et al., 2016). 
13 In some days the number of participating financial institutions is lower. 
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their width represents its contribution to the total value of claims in the system. Interbank 

exposures in 𝐶 let us follow the path of direct linkages considered by the algorithm.  

 

 

Figure 1. Interbank claims network for a randomly selected date. Nodes (in 

rectangles) correspond to participating financial institutions. The height 

(width) of each node corresponds to its contribution to the total claims of the 

market as a lender (borrower). The direction of the arrows represents the 

existence of an interbank claim (i.e. from the lender to the borrower), whereas 

their width represents its contribution to the total value of claims in the 

system. Non-connected nodes (in the right border of the graph) correspond to 

financial institutions without outstanding lent or borrowed amounts in the 

selected date. (Source: León et al. (2016)). 

 

The proxy variable we use for the short-term liquidity position is the 7-day 𝐼𝑅𝐿 calculated 

by the Colombian Financial Superintendency based on financial institutions’ reports. This 
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indicator is available at a weekly frequency (each Friday) from January 4, 2013 to December 

26, 2014 (i.e. 104 observations). As the proxy for the short-term liquidity position has the 

lowest frequency (i.e. weekly) and the least number of observations, this variable determines 

the period and the frequency of data used in the exercise. Thus, the sample period goes from 

April 5, 2013 to December 26, 2014, which corresponds to 90 weekly observations (𝑛 = 90). 

In Colombia the short-term liquidity position (7-day 𝐼𝑅𝐿) exceeds the interbank (i.e. non-

collateralized) exposures by two orders of magnitude (see Table 1). The mean (and 

maximum) interbank exposure is about 1.5% the mean (and maximum) short-term liquidity 

position. This is expected because the size of the local interbank funds market is rather small. 

Most liquidity exchanges between financial institutions in the money market consists of 

collateralized lending in the form of sell/buy backs (i.e. simultáneas), with the interbank (i.e. 

non-collateralized) market contributing with about 9.68% of the total.14 Despite the size of 

the interbank exposures appears to be negligible and incapable of resulting in sizeable 

liquidity contagion, examining how the short-term liquidity position is affected is relevant 

for analytical purposes. 

 

In Million COP 

(on daily data) 

Interbank 

exposures 

Short-term 

liquidity 

position 

Mean 16,299 1,098,813 

Standard deviation 2,731 2,195,172 

Maximum 215,500 14,391,923 

Minimum 50 156 

Table 1. Descriptive statistics for interbank exposures 

and short-term liquidity position datasets. In millions of 

Colombian pesos (COP), based on daily data for the 90 

days under analysis. The short-term liquidity position 

exceeds the interbank exposures by two orders of 

magnitude. Only data with values greater than zero were 

used for the estimation of the statistics.  

                                                           
14 Based on 2014’s figures (see Banco de la República (2015)), collateralized lending between financial institutions (i.e. 

sell/buy backs and repos) account for about 90.32% of money market transactions. Interbank (i.e. non collateralized) lending 

accounts for the residual (9.68%). Intraday interbank lending is not considered because it does not entail a financial exposure 

at the end of the day. 
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Other research works do not limit their analysis to non-collateralized borrowing –like we do. 

For instance, it is unclear whether Battiston et al. (2012) distinguishes between collateralized 

or non-collateralized investments (i.e. funding) among financial institutions. However, in the 

case of collateralized funding (e.g. repos, sell/buy backs) the default would be followed by a 

rather swift process of liquidating and collecting the cash value of the pledged collateral, thus 

rendering direct contagion as an unlikely outcome. Consequently, despite including 

collateralized borrowing could make contagion effects sizeable, they should have a negligible 

impact in our examination of direct contagion: the main impact arising from a default (i.e. 

principal risk) is minimized by pledged collateral.15 The same argument applies for foreign 

exchange and securities transactions that are settled under exchange-for-value arrangements 

(e.g. delivery-versus-payment).  

Accordingly, instead of including collateralized funding or exchange-for-value transactions 

in order to magnify and examine the dynamics of liquidity contagion under debatable 

assumptions, we consider short-term illiquidity scenarios. We choose to examine the 

dynamics of liquidity contagion following an ex-ante generalized reduction in the short-term 

liquidity position equivalent to a fraction of observed short-term liquidity position (𝐼𝑅𝐿). Let 

𝜋 be a fraction (𝜋 ∈ [0, 0.99]), 𝑙𝜋  is the short-term liquidity scenario after a drop of 𝜋 × 𝑙 , 

with 𝑙𝜋 = (1 − 𝜋)𝑙 . We expect that illiquidity scenarios, consisting of reducing the initial 

short-term liquidity position of financial institutions, will reveal how the dynamics of 

liquidity contagion may occur in a hypothetical stress setup.16  

 

                                                           
15 Yet, other risks related to collateralized lending –not considered here- would remain, such as replacement cost risk arising 

from a collateral with market value below the refund value, and the potential fire-sale risk arising from the widespread 

liquidation of collaterals to face the default. 
16 Moreover, the illiquidity scenarios considered, from 100% to 1% of 7-day 𝐼𝑅𝐿, allow for implicitly evaluating particularly 

interesting short-term liquidity levels. For instance, as reserve requirements are representative for the calculation of the 𝐼𝑅𝐿 

(i.e. the mean ratio of reserve requirements to 𝐼𝑅𝐿 is about 24% for the selected sample), illiquidity scenarios corresponding 

to about 76% of the short-term liquidity are interesting to examine. 
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4 Main results 

We choose to examine the dynamics of liquidity contagion following an ex-ante generalized 

reduction in the short-term liquidity position. 100 scenarios are selected, starting with a base 

scenario consisting of a null reduction (𝑙𝜋=0 = 1.00𝑙 ), throughout a scenario consisting of 

short-term liquidity reduction equivalent to 99% of observed 𝐼𝑅𝐿 (𝑙𝜋=.99 = 0.01𝑙 ), with 1% 

increases (𝜋 = 0, 0.01, 0.02, ⋯ 0.99). We expect the first scenario (𝜋 = 0) to show slight 

contagion effects –if any. Regarding the other 99 scenarios, we expect results to be 

monotonically increasing in the size of the reduction in short-term liquidity: the higher 𝜋  

(i.e. the size of ex-ante liquidity reduction), the higher the contagion effects.  

First, we report the effect of contagion. For each day and illiquidity scenario, we examine the 

average and maximum change in the short-term liquidity position of the system, and the 

number of financial institutions entering into default as a result of contagion. Second, 

concerned about financial institutions’ systemic importance, we report how designated 

individual financial institutions contribute to the contagion effect estimated for each day and 

illiquidity scenario. 

4.1 Contagion effects 

Figure 2 shows the mean contagion effects. Each (blue) line in Figure 2 corresponds to one 

of the 90 𝑛-day estimated average contagion effects initiated by all financial institutions with 

outstanding claims in the interbank market. That is, lines display the average percent drop in 

financial system’s short-term liquidity (y-axis) as a function of the selected illiquidity 

scenario (𝑙𝜋=0,0.01,0.02,⋯0.99). The bold (red) line is the mean of the 90 lines. 

As expected, the average contagion effect increases monotonically. Concerning the average 

contagion effect for the base case scenario (𝑙𝜋=0 = 1.00𝑙 ), effects are bounded to a rather 

negligible reduction in short-term liquidity, between 0.00% and 0.11%. The greatest 𝑛-day 

average contagion effect in our sample is equivalent to a reduction of about 5.90% in short-

term liquidity, but it occurs in the worst scenario (𝑙𝜋=.99 = 0.01𝑙 ).  It is straightforward that 

average contagion effects in short-term liquidity become relevant only after extreme 

illiquidity scenarios are considered (e.g. 𝑙𝜋>.80). 
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Figure 2. Average contagion effects. Each line corresponds to one of the 90 

𝑛-day estimated average contagion effects caused by all financial 

institutions with outstanding claims in the interbank market (y-axis), as a 

function of the selected scenario (𝑙𝜋=0,0.01,0.02,⋯0.99). The bold line is the 

mean of the 90 lines. 

 

Studying the average contagion may hinder interesting effects in networks that are 

characterized by an inhomogeneous connective structure. By focusing on the average effect 

we are implicitly relying on the existence of a typical financial institution, a misleading 

approach due to the well-documented heterogeneous distribution of linkages and their 

weights among institutions participating in financial networks.17 Therefore, as it is advisable 

                                                           
17 It is well-documented that most real-world networks are inhomogeneous, with particularly skewed distributions of their 

connections (i.e. degree) and their weights, allegedly following a power law distribution in the form of a scale-free network. 

Actual financial networks have also been characterized as particularly skewed, either following a power-law distribution of 

linkages (see Boss, Elsinger, Summer, and Thurner (2004), Inaoka, Ninomiya, Tanigushi, Shimizu, and Takayasu (2004), 

Sorämaki, Bech, Arnold, Glass, and Beyeler (2007), Bech and Atalay (2010)) or some other type of skewed distribution 

(see Martínez-Jaramillo, Alexandrova-Kabadjova, Bravo-Benítez, and Solórzano-Margain (2012), Craig and von Peter 

(2014), Fricke and Lux (2014)). In the Colombian case actual financial networks have been characterized as approximately 

following a power-law distribution of linkages and their weights, including interbank networks (see Cepeda (2008), León, 

Machado, and Sarmiento (2014), and León and Berndsen (2014)).  
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to study extreme cases in particularly heterogeneous systems –such as financial systems-, 

Figure 3 exhibits the maximum contagion effects. 

Maximum contagion effect increases monotonically as well. The maximum contagion effect 

for the base case scenario (𝑙𝜋=0 = 1.00𝑙 ) is bounded to a reduction in short-term liquidity 

between 0.00% and 1.21%, which is –once more- rather negligible. The greatest 𝑛-day 

maximum contagion effect in our sample is equivalent to a short-term liquidity reduction of 

about 45.78%, but it occurs –again- only after a rather extreme and very unlikely illiquidity 

scenario (𝑙𝜋=.99 = 0.01𝑙 ).  

 
Figure 3. Maximum contagion effects. Each line corresponds to one of the 

90 𝑛-day estimated maximum contagion effects caused by all financial 

institutions with outstanding claims in the interbank market (y-axis), as a 

function of the selected scenario (𝑙𝜋=0,0.01,0.02,⋯0.99). The bold line is the 

mean of the 90 lines. 

 

Figure 4 compares the distribution of the average and maximum contagion effects for all 

financial institutions, and all illiquidity scenarios. As before, the average contagion effect is 

negligible, below 6% of the initial short-term liquidity for any financial institution or 

illiquidity scenario. The distribution of the maximum contagion effects displays sizeable 
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reductions in short-term liquidity, but they correspond to extreme illiquidity scenarios that 

appear to be implausible at best.18 

 
Figure 4. Distribution of average and maximum contagion effects. The 

average contagion effect is negligible. The distribution of the maximum 

contagion effects displays sizeable reductions in short-term liquidity, but 

they correspond to extreme illiquidity scenarios that appear to be 

implausible at best. 

 

The time-series dynamics of potential contagion effects may be illustrative for monitoring 

purposes by financial authorities. For instance, tracking the dynamics of the average and 

maximum contagion effect for the base scenario (𝑙𝜋=0 = 1.00𝑙 ) may help to identify 

changes in the potential outcomes of a default for the interbank market, and the potential 

liquidity needs that the system may face in such event. Correspondingly, Figure 5 presents 

the dynamics of the estimated average and maximum contagion effects throughout the 

sample in the absence ex-ante liquidity reductions. Consistent with previous results, in the 

base case scenario the interbank market would face an average drop in short-term liquidity 

in the 0.00%-0.11% range, whereas the maximum drop would be in the 0.00%-1.21% range. 

                                                           
18 It is quite likely that financial authorities will avoid these extreme scenarios by any means necessary (e.g. last-resort 

lending facilities, emergency acquisitions or bail outs, etc.). 
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Once again, contagion in this type of base case scenario appears to be minor, but their time-

series dynamics may be worth monitoring by financial authorities. 

 
Figure 5. Contagion effects throughout the sample. This figure displays the 

average and maximum contagion effect arising from the default of a 

financial institution for each day in the sample in the base case scenario 

(𝑙𝜋=0 = 1.00𝑙 ). Consistent with previous results, in this scenario the 

interbank market would face an average drop in short-term liquidity in the 

0.00%-0.11% range, whereas the maximum drop would be in the 0.00%-

1.21% range. 

 

Estimating the effects caused by each financial institution defaulting under each illiquidity 

scenario for each of the 90 days in the sample yields 138,900 observations,19 of which 

98.97% correspond to dynamics not leading to any default. That is, irrespective of the 

designated default or the illiquidity scenario, subsequent defaults caused by contagion are 

particularly rare. As exhibited in Figure 6, 1,197 (0.86%) observations correspond to one 

financial institution defaulting. Cascades consisting of two, three, four, five and six 

defaulting institutions are rare as well, and they are observed in 172 (0.12%), 44 (0.03%), 17 

                                                           
19 Observations result from multiplying the number of days (90) by the scenarios (100) by the number of financial 

institutions with outstanding borrowing in the interbank market in each day. 
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(0.01%), 3 (0.00%) and 1 (0.00%) occasions, respectively. Consequently, as expected from 

the size of the Colombian interbank market, contagion effects are rather minor, and they tend 

to occur as the illiquidity scenario becomes tougher (i.e. 𝑙𝜋>.80). 

 

Figure 6. Number of financial institutions entering into default as a result of 

contagion. This figure displays the number of financial institutions that 

entered into default as a result of contagion dynamics (y-axis) for each one 

of the illiquidity scenarios (x-axis) for each of the 90 days in the sample. 

Each dot may represent more than one observation. Most of the observations 

(98.97%) correspond to no defaults. 

 

All in all, it is rather evident that contagion effects by themselves are not a threat to the 

stability of the system under analysis. Irrespective of the metric employed (i.e. the reduction 

in short-term liquidity or the number of institutions entering into default), results tend to 

display negligible or non-substantial contagion effects. Unless a major drop in the short-term 

liquidity of all participants precedes the contagion dynamics, we consistently find that the 

interbank network is rather robust to average events (i.e. the default of an average financial 

institution). Likewise, most maximum contagion events are far from substantial, whereas a 
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major –but unlikely- drop precedes those that may be important for the short-term liquidity 

of all participants as well. 

This result may be related to the size of the interbank market and its corresponding claims 

network. This lack of substantial contagion effects in the Colombian financial market is not 

limited to this study. Cepeda and Ortega (2015) also find that contagion in the Colombian 

large-value payment system is mitigated once high-quality assets are considered as potential 

sources of liquidity. Upper (2011) suggests that contagion due to exposures in the interbank 

loan market is an unlikely event in the sense that it happens in only a small fraction of the 

scenarios considered. In this vein, Roukny et al. (2013) report that contagion effects in 

financial networks are not substantial if no additional sources of distress (e.g. deposit runs, 

fire-sales, credit runs) are considered. Battiston et al. (2015) suggest that as financial 

regulation recommends financial institutions to keep individual credit exposures to a 

manageable limit (e.g. with respect to equity or total credit exposure), it is very unlikely that 

a single initial financial institution’s default triggers any other default. Therefore, our results 

regarding the limited impact of contagion effects in the local interbank market is an already 

documented trait of other financial markets. 

4.2 Systemic importance of financial institutions 

The previous section concluded that contagion effects are non-substantial. The number of 

financial institutions entering into default as a consequence of contagion dynamics is low, 

and it is rather an exceptional outcome that involves unlikely extreme illiquidity scenarios. 

Also, most reductions in short-term liquidity caused by contagion are non-substantial, and 

those that are non-negligible involve implausible extreme illiquidity scenarios as well. 

However, examining how individual financial institutions contribute to the occurrence of 

defaults and to the reduction in short-term liquidity may be illustrative about their systemic 

importance. The higher the contribution of financial institution 𝑖 to contagion-related total 

short-term liquidity drops and defaults, the higher its systemic importance. 

Figure 7 displays to what extent each financial institution (y-axis) contributes to the 

contagion-related total short-term liquidity reduction for all illiquidity scenarios. It is evident 

that the default of financial institution #26 contributes the most to reductions in system’s 
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short-term liquidity, about 14.2%. Accordingly, financial institution #26 may be easily 

deemed as the most systemically important for the interbank network under analysis in terms 

of its short-term liquidity effects. Financial institutions #24, 28, and 20 belong to a second 

tier of systemically important financial institutions contributing with about 8%-9% each, 

whereas those remaining contribute with less than 7% each. 

 
Figure 7. Financial institutions’ individual contribution to system’s short-

term liquidity reduction for all illiquidity scenarios. The default of financial 

institution #26 contributes the most to reductions in system’s short-term 

liquidity, about 14.2%.  

 

About the contribution to the total number of defaults caused by contagion effects, Figure 8 

shows that financial institution #24 is the most representative (21.2%), and –hence- it may 

be considered the most systemically important financial institution in the Colombian 

interbank market in terms of subsequent defaults. The second financial institution is #11 

(17.6%). Financial institutions #17 and 26 belong to a third tier of systemic importance, 

contributing with about 11% and 10%, respectively. The remaining financial institutions 

contribute with less than 6% each. 
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Figure 8. Financial institutions’ individual contribution to system’s total 

defaults for all illiquidity scenarios. The default of financial institution #24 

contributes with 21.2% of the defaults. 

 

As expected when assessing financial institutions’ systemic importance, we find that the 

negative effects resulting from contagion are decidedly concentrated in a few of them, 

namely in financial institutions #26, 24, and 11. However, as most contagion effects here 

portrayed are conditional on the occurrence of major –but very unlikely- scenarios of 

generalized illiquidity, conclusions about the systemic importance of these financial 

institutions for the entire financial system may be unjustified. Furthermore, their systemic 

importance is bounded to the local interbank network, which is not particularly representative 

of the whole financial system in the Colombian case. 

 

5 Final remarks 

We took advantage of the DebtRank methodology (Battiston et al., 2012) in order to examine 

how the default of a selected financial institution in the Colombian interbank network impacts 

the short-term liquidity position of its counterparties and the system as a whole. Instead of 
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focusing on the impact of default on financial institutions’ capital buffer (i.e. their solvency), 

we focused on how an initial default eroded their ability to refund interbank loans (i.e. their 

short-term liquidity) and eventually forced them into default. 

Consistent with literature on direct-linkage financial contagion (Furfine, 2003; Upper, 2011; 

Roukny et al., 2013; Cepeda & Ortega, 2015), contagion effects resulting from an initial 

default in the interbank market are non-substantial. Unless contagion dynamics are preceded 

by a major –but unlikely- drop in the short-term liquidity position of all participants, we find 

that contagion effects on individual and system’s short-term liquidity are negligible. Our 

results are consistent with reported features of banking crisis, which tend to be caused by 

shocks that hit several banks simultaneously rather than domino effects from idiosyncratic 

failures (see Upper (2011)). Likewise, our results concur with those reported by Roukny et 

al. (2013), who find that network topology matters only when financial markets are under 

stress (e.g. illiquid). 

The methodological contribution of our work is relevant. By modifying DebtRank to 

recursively measure contagion effects in the short-term liquidity position of financial 

institutions we supplement financial authorities’ monitoring tools. In this sense, we capture 

the advantages of DebtRank to conveniently measure how contagion may affect financial 

institutions’ ability to refund interbank loans in the short-term. 

Despite the lack of systemic impact of contagion effects in the base case scenario, our results 

are valuable for financial authorities as well. The numerical outcomes provide an 

economically meaningful quantitative assessment of the systemic importance of financial 

institutions based on their potential effect in financial institutions’ short-term liquidity. 

Moreover, based on the potential effect on the system’s liquidity, our results provide a 

quantitative assessment of the liquidity that should be obtained from other available sources 

in case of a default by a financial institution, such as collateralized borrowing (e.g. from other 

financial institutions or the central bank), selling financial assets or increasing deposits. 

Nevertheless, as most contagion effects here portrayed are conditional on the occurrence of 

major –but unlikely- scenarios of generalized illiquidity, conclusions about the systemic 

importance may be unjustified. Consequently, it is important to emphasize that systemic 
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importance resulting from this exercise is bounded to the local interbank network, which may 

not be particularly representative of the whole financial system in the Colombian case. 

Due to the aim and scope of our research work there are several issues that should be 

addressed in order to enhance the examination of financial contagion in the Colombian case. 

For instance, as in Müller (2006), it is advisable to simultaneously examine the impact of 

default contagion on solvency and liquidity. Estimating how financial institutions react to 

their counterparties’ defaults (see Martínez and Cepeda (2015)) and incorporating such 

reactions in the contagion dynamics may enrich the analytical reach of the model as well; 

reactions by financial authorities should be interesting to consider too. Additionally, as in 

Tabak et al. (2013) and Poledna et al. (2015), it is imperative to articulate this type of systemic 

importance assessment with the estimation of default probabilities to assess systemic risk as 

financial systems’ expected impact over a determined time horizon. Furthermore, as 

illustrated in the multi-layer financial exposures network model by Poledna et al. (2015), it 

is convenient to link different sources of exposures among financial institutions (e.g. 

derivatives, security cross-holdings) in order to have a comprehensive measure of direct-

linkage contagion; in this vein, it is likely that the non-substantial contagion effects here 

reported may be due to the underestimation of systemic impact that results from focusing on 

the interbank market only. Finally, it is also convenient to couple direct- (e.g. mutual 

exposures) and indirect-linkage (e.g. fire-sales, deposit runs, credit runs) contagion models 

with the aim of attaining a comprehensive measure of financial contagion.  
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7 Appendix 1: DebtRank 

As noted by Battiston et al. (2012), there are two variables associated to each node in a 

financial exposures network. One that measures each financial institution’s level of distress 

(ℎ𝑖) and another (𝑆𝑖) that denotes three possible states that this financial institution may take: 

undistressed (𝑈), distressed (𝐷) and inactive (𝐼). The individual level of distress (ℎ𝑖) is a 

continuous variable that takes a value in the zero-one closed interval [0, 1]. Thus,  ℎ𝑖(𝑡) =

0 corresponds to an undistressed financial institution whereas ℎ𝑖(𝑡) = 1 belongs to a 

financial institution in default: 

ℎ𝑖(𝑡) = 𝑚𝑖𝑛 {1, ℎ𝑖(𝑡 − 1) + ∑ 𝑊𝑖𝑗ℎ𝑗(𝑡 − 1)

𝑗|𝑠𝑗(𝑡−1)=𝐷

}     [6] 

 

For a given point in time 𝑡, the dynamics for the 𝑖 − 𝑡ℎ node (financial institution) are given 

by the minimum value between one and its updated level of distress. This updated level 

depends on its own level of distress registered in the prior period (ℎ𝑖(𝑡 − 1)) and the distress 

level that financial institution 𝑖 received from its counterparties (represented by the 

summation of the impacts caused by all the 𝑗 − 𝑡ℎ institutions that entered into distress in the 

former period (ℎ𝑗(𝑡 − 1))). 

The weights matrix (𝑊) required to compute the individual level of distress (ℎ𝑖(𝑡)) contains 

impacts measured as the minimum value between one and the ratio of the total amount 

invested by a financial institution 𝑖 in the funding of 𝑗 (𝐴𝑖𝑗) to the level of capital of that 

financial institution (𝐸𝑖): 𝑊𝑖𝑗 = 𝑚𝑖𝑛 {1,
𝐴𝑖𝑗

𝐸𝑖
}. If node 𝑗 defaults, node 𝑖 suffers a loss equal to 

𝐴𝑖𝑗 . As long as its level of capital overpass that loss (𝐸𝑖 > 𝐴𝑖𝑗) the impact of node 𝑗 on node 

𝑖 is given by the liabilities-to-capital ratio, otherwise, that impact is equal to one (indicating 

that node 𝑖 entered into default). 

The individual level of distress (given by [6]) can be computed only for 𝑡 ≥ 2. For 𝑡 = 1 an 

initial condition should be imposed in order to make this expression mathematically possible. 

This initial condition consists of setting ℎ𝑖(1) = 𝜓, ∀ 𝑖 𝜖 𝑆𝑓 , where  the (assumed) initial 



30 
 

level of distress is  𝜓 , and 𝑆𝑓 is the set of distressed nodes at  𝑡 = 1. It is also assumed that 

𝜓 𝜖[0, 1],  and that 𝜓 = 1 represents the distressed node (Battiston et al., 2012). Therefore, 

for 𝑡 ≥ 2 equation [6] determines the DebtRank dynamics, understood as the cases based on 

impacts that affect the nodes irrespective of whether default occurred (Battiston et al., 2015). 

The procedure continues computing impacts until all nodes in the network are either 

undistressed (𝑈) or inactive (𝐼). At that point the dynamics stop and the DebtRank (𝐷𝑅) 

measure can be calculated as: 

𝐷𝑅 = ∑ ℎ𝑗(𝑇)𝑣𝑗

𝑗

− ∑ ℎ𝑗(1)𝑣𝑗 [7] 

 

In equation [7] the economic value of a node is given by  𝑣𝑗 , and is measured by financial 

institution’s assets invested as a fraction of the total assets invested in the market (𝑣𝑗 =

 𝐴𝑗 ∑ 𝐴𝑗𝑗⁄ ). Hence, DebtRank measures the distress of the entire system excluding the initial 

(assumed) level of distress (second term in equation [7]). In economic terms, this measure 

computes the total loss in the system (measured in monetary terms) generated by the assumed 

initial default (Battiston et al., 2012). 

Several authors have remarked the advantages of DebtRank, in contrast to other measures of 

systemic distress in a network (Battiston et al., 2012, Thurner & Poledna 2013, and Tabak et 

al., 2013). In particular, the DebtRank measure has an economic interpretation in monetary 

terms and, also, it is considered a good early-warning indicator candidate. Likewise, the 

computation of distress by means of DebtRank excludes the possibility of double-counting 

the impacts of a default. In other words, once a shocked financial institution has affected its 

counterparties it enters into an inactive state (𝐼), which permits that this institution be 

impacted by shocks coming from other participants in the market but blocks the re-

transmission of these shocks. For this reason, unlike eigenvector centrality or PageRank, it 

is recognized that under the DR measure cycles have finite reverberation (Battiston et al., 

2012). 
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