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Abstract

Central banks generally target multiple objectives while having at least the same number

of monetary instruments. However, some instruments can be inadvertently collinear, leading

to indeterminacy and identification failures. Paradoxically, most empirical studies have shied

away from this dependence. In this paper we propose a novel method of identifying simultaneous

monetary shocks by introducing a Tobit model within a VAR. An advantage of our method

is that it can be easily estimated using only least squares and a maximum likelihood function.

Also, the impulse-response analysis can be carried out as in the traditional time-series setting

and can be applied in a structural framework. Hence, we model a dual process consisting of a

censored foreign exchange intervention policy along with a linear interest rate intervention policy.

In simulation exercises we show that our method outperforms a benchmark case of estimating

policy functions separately. In fact, as the covariance between shocks increases, so does the

performance of our method. In our empirical approach, we estimate the policy covariance for the

case of Colombia and Turkey and find significant differences when compared to the benchmark

case.
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“Forced to state all of the insights of international macroeconomics while standing on one leg, one could do

worse than raise a foot off the ground and say something like: Governments face the policy trilemma –the

rest is commentary.”1

1 Introduction

Central bank intervention typically entails a specific number of instruments and at most the

same number of objectives in order to have an effective monetary policy schedule. In some cases,

however, policy instruments are inadvertently collinear, leading to monetary indeterminacy and

identification failures. Such is the case of the monetary trilemma, which states that a country

cannot simultaneously allow for free capital flows while having autonomous monetary policy and a

managed exchange rate.2 Namely, if policymakers are to gain full control of the exchange rate, then

they must choose between abandoning monetary policy or enacting capital controls. Ultimately, the

pursuit of multiple objectives raises the question of whether central banks sometimes overreach and

underdeliver. In some cases, the effects of simultaneous policies can offset each other.

Given that monetary policies are seldom independent, any variation in one instrument most

likely alters the probability distribution of others. Paradoxically, most empirical studies have

shied away from this dependence, to the point of being almost completely ignored. To the best

of our knowledge, only a handful of studies exist that address the issue of having multiple policy

instruments.3 We believe that one of the problems that researchers face is the complexity in which

the covariance of policy is estimated, especially when dealing with non-linear functions. As a result,

the bulk of the relating literature to date has opted to treat each objective separately, even at the

risk of conceding some degree of bias or endogeneity problems, by not controlling for the correlation

of other simultaneous monetary shocks. Furthermore, while the existing literature more or less

agrees on the effects of interest rate intervention (IRI), it has yet to converge on the effects of

foreign exchange intervention (FXI).4

Our main objective is to shed some light on this issue, by clearly detailing a procedure through

which policy shocks can be correctly identified. Thus, we believe that our investigation can provide

a clear and accessible toolkit for central banks, especially those that carry numerous objectives at

1Klein (2013), page 97.
2The monetary trilemma goes back to Mundell (1963) and Fleming (1962).
3See Bergin and Jorda (2000), Ostry et al. (2012), and Villamizar-Villegas (2015).
4Empirical surveys on the effects of foreign exchange intervention include Dornbusch (1980), Meese and Rogoff

(1988), Dominguez and Frankel (1993), Edison (1993), Dominguez (2003), Neely (2005), Menkhoff (2010), and
Villamizar-Villegas and Perez-Reyna (2017). Alternatively, the literature on the effects of central bank’s policy rates
is broader and include the works of Christiano et al. (1996), Christiano et al. (1999), and Romer and Romer (2004),
among others.
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hand. Essentially, we study the effects of simultaneous policies in a unified framework, i.e. when

monetary instruments are governed by dependent decision processes. Specifically, we: (i) model the

dual strategy of a central bank when it conducts both IRI and FXI, (ii) allow for an auto-regressive

process within each policy function, and (iii) model the FXI policy function through a censored

Tobit model.

The latter objective is motivated by stylized facts that show numerous purchases of foreign

currency but a general absence of sales. For example, Echavarŕıa et al. (2013) argue that “the

absence of sales suggests the existence of some external factor or constraint that prevents monetary

authorities to symmetrically react to economic conditions.” In fact, studies such as Calvo and

Reinhart (2002) and Levy-Yeyati and Sturzenegger (2007) have coined this phenomenon as a “fear

of floating”. As such, it is common for studies to assume a Tobit (type-I) model when estimating

the FXI policy function.

Also, while asymptotic theory for dynamic Tobit models has been addressed in several works

such as de Jong and Herrera (2011) and Hahn and Kuersteiner (2010), few studies have considered

the case in which the Tobit model depends on lags of the observable variable (Lee (1999)). We add

to this literature by proposing a simpler estimation method. Namely, the novelty of our proposed

method is that it introduces a Tobit model within a Vector Autoregression (VAR). The advantage

of doing so is threefold. First, the model can be easily estimated using only least squares and a

maximum likelihood function. Second, the impulse-response analysis can be carried out as in the

traditional time-series setting. Third, the model can be easily extended to a structural framework

(i.e. SVAR).

To better evaluate the properties of our proposed method, we carry out an extensive simulation

study to asses the properties and performance of the estimator and compare it to a benchmark

‘naive’ approach, which consists of estimating each equation in the system separately. We thus

center our analysis on two scenarios: (i) one in which policies are conditionally independent, and

(ii) one in which there is a significant covariance between policies, even when controlling for an

informative history. While the former allows for monetary shocks to be computed using separate

univariate equations, the latter involves a joint-estimation of policy. Hence, the comparison between

these two scenarios reveal some of the perils of estimating separate policy functions when actually

faced with a significant level of interdependence.

We next turn to an empirical application of two emerging market economies: the cases of

Turkey and Colombia during the period of 1999-2010. These countries are ideally suited to study the

effects of various monetary policies, since they are two out of the nearly thirty fully-fledged inflation

targeting countries (see Hammond (2012)). Also, both countries have conducted frequent and

widespread foreign exchange intervention in order to target exchange rate behavior. Consequently,
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monetary policy is based on a two-objective, two-instrument framework. In addition, the availability

of proprietary and high frequency data of both interest rate and foreign exchange intervention, as

well as relevant covariates (e.g. internal forecasts) that each central bank used when setting policy

decisions, enables us to match the actions of policymakers with their targets, within a clear timing

profile.

Our simulation results show that our proposed method for identifying simultaneous monetary

shocks outperforms the benchmark case of estimating each policy function separately. This finding

is robust across different sample sizes, distributional assumptions and number of exogenous variables.

In fact, we find that our method yields a lower bias and root-mean-square-error among estimates

even when policy shocks are independent. More importantly, as the covariance between shocks

increases (in absolute value), so does the performance of our proposed method.

In our empirical exercises we estimate a small (-0.01) and mild (0.14) policy covariance for

the case of Colombia and Turkey, respectively. This covariance carries over to the estimated results

and impulse response functions. For example, for the Colombian case we find that the policy rate

positively reacts to inflation (as in any version of the Taylor rule) under our proposed method, but

not under the Naive approach. For the Turkish economy we find that output growth is only relevant

to determine the policy rate but not foreign exchange purchases (the Naive approach suggests that

it is significant in determining both policies). Finally, the persistence of monetary shocks are lower

(in Turkey) when estimated with our iterative method.

This paper proceeds as follows: In Section 2 we present our method of identifying simultaneous

monetary shocks and lay out the procedures to compute the variance of the estimated coefficients,

impulse-response functions, and confidence intervals. In Section 3 we conduct simulation exercises

and compare the performance of our method with a benchmark ‘Naive’ case. In this section we

also carry out robustness checks regarding different distributional assumptions, various degrees of

covariance, and the inclusion of a different number of exogenous variables. In Section 4 we present

the results of our empirical approach. Finally, Section 5 concludes.

2 Methodology

In this section, we extend the current literature by constructing a censored bivariate VAR model,

comprised of an observable IRI (rt) and a latent FXI (Int∗t ). To further clarify, FXI is only observable

when a central bank purchases foreign currency, i.e., when the latent variable Int∗t crosses some

positive threshold η, so that Intt = max(η, Int∗t ).
5

5This cutoff point can be consistently estimated following Carson and Sun (2007).
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For simplicity, let yt = (Int∗t , rt)
′ be the vector of endogenous variables, let zt be a m × 1

dimensional vector of exogenous variables and define xt ≡ (1, y′t−1, ..., y
′
t−p, z

′
t, ..., z

′
t−s+1)′. The latent

bivariate VAR model can be written as

yt = Axt + εt ∀t ∈ [max(p+ 1, s), T ] (1)

where A′ ≡
[
A′1 A′2

]
, Ai is a 1× (2× p+m× s+ 1) vector, εt is an i.i.d normally distributed error

term such that εt ∼ N(0, Σ) and Σ ≡

[
σ211 σ12

σ21 σ222

]
is a positive definite matrix.

For the estimation procedure, note that the bivariate density of the vector yt can be factored as

f(yt) = f(Int∗t |rt)f(rt), where

f(rt) =
1

σ22
φ

(
rt −A′2xt

σ22

)
(2)

f(Int∗t |rt) =
1

σC
φ

(
Int∗t −mt

σC

)
. (3)

In the above expressions, φ denotes the standard normal density function, σ2C ≡ σ211 −
(
σ12
σ22

)2
and mt ≡ A′1xt + σ12

σ2
22

(rt−A′2xt). Hence, the resulting log-likelihood function for the bivariate latent

VAR model can be written as

l(θ) =
∑
t

log(f(yt)) =
∑
t

log(f(rt)) +
∑
t

log(f(Int∗t |rt)) (4)

where θ ≡ (A′1, A
′
2, σ11, σ12, σ22)

′. As suggested by Hamilton (1994), maximizing the expression in

(4) with respect to θ yields the same result as maximizing with respect to θ1 = (A′1, B
′
1, b, σ11, σC)′

as long as the following restrictions: b = σ12
σ2
22

and B′1 = A′1 − σ12
σ2
22
A′2 are imposed. The latter

maximization is easier to achieve since (A′1, σ11) only appears in the expression
∑

t log(f(rt)), while

(B′1, b, σC) appears exclusively in
∑

t log(f(Int∗t |rt)). Therefore, the maximization of each set of

parameters can be done independently using least squares.

In practical applications, the above estimation method would be straightforward if Int∗t was

observable (this is not the case, given that the observed variable Intt is left-censored at the cutoff

η). Nonetheless, the system of equations in (1) can still be estimated by using least squares for the

maximization of
∑

t log(f(rt)), and a Tobit type I model for the maximization of
∑

t log(f(Int∗t |rt)).6

In this case, the lags of the latent variable Int∗t on the right hand side of (1) have to be replaced by

6See Amemiya (1973).
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lags of the observable variable Intt. The latter is clearly a misspecification error, and it is similar

to a measurement error problem. Hence, we expect that this leads to inconsistent estimates. This

result is confirmed by our simulation exercises in Section 3.

Consequently, in order to correct the bias in the estimated coefficients, we propose a new

iterative method which we refer to henceforth as the Iterative Instrumental Tobit VAR (IITV).

This method seems to correct the asymptotic bias caused by the misspecification error discussed

in the paragraph above. The algorithm for the IITV estimation is described in the following six

steps:7

1. Estimate θ1 using: least squares in equation 2 and a standard (Type I) Tobit model in equation

(3). Replace the lags of the latent variable Int∗t with lags of the observable variable Intt.

Since the system is exactly identified, then the coefficients (A′2, σ12, σ22) are recovered using

the restrictions for (b, B′1, σC).

2. Using the least squares residuals of the regression in (2) and Σ̂, compute the expected value

and the variance of the density function f(ε1t|ε̂2t) for all t. Notice that this step is simplified

since, conditional on ε2t, ε1t follows a normal distribution with mean σ12
σ2
22
ε1t and variance

σ211 −
(
σ12
σ22

)2
.

3. Build residuals for ε̂1. That is, if Intt > η̂, take ε̂1t = Intt − Â′1xt, else build the expected

value of the density function f(ε1t|ε̂2t, ε1t < (η̂ − Â′1xt) and use that value as an instrument

for ε̂1t.

4. Once the series for ε̂1 has been obtained, build the instrumental latent variable Int∗∗t =

Â1
′
xt + ε̂1t.

5. Repeat step 1, but now the lags of the latent variable Int∗t are replaced by the lags of the

instrumental latent variable Int∗∗t . Again, the coefficients (A′2, σ12, σ22) are recovered using

the restrictions for (b, B′1, σC).

6. Repeat steps 2-5 until the absolute value of the difference between consecutive estimations is

less than a predefined tolerance value.

2.1 Variance of IITV coefficients

The simulation exercises in Section 3 suggest that the IITV method of estimation is consistent. And,

since it only involves using ordinary least squares and a maximum likelihood estimation, asymptotic

normality should follow (formal proofs of IITV’s asymptotic properties are subject to an ongoing

7See in particular Johnson et al. (1994) for step 2.
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investigation). The latter allows us to build the variance of the coefficients in θ̂ using the estimation

results for θ̂1 and the delta method.8 For that purpose, equations 5-7 are considered:

σ211 = σ2C +

(
σ12
σ22

)2

(5)

σ12 = b× σ222 (6)

A′1 = B′1 +
σ12
σ222

A′2. (7)

2.2 Impulse Response Function (IRF) Analysis

For ease in notation, define a 2 × (2 × p + m × s) matrix Jb ≡ (0 : ... : I2 : 0 : ... : 0) where the

sub-index b in J denotes the column where the 2× 2 identity matrix (I2) begins. If we omit the

intercept in matrix A, then the model in (1) can be rewritten as:

yt = C1yt−1 + ...+ Cpyt−p + Cp+1zt + Cp+szt−s+1 + εt, (8)

where Ci = AJ ′2(i−1)+1. Note that the model in (8) is a reduced form VARX(p,(s-1)) and can be

represented as a simpler VARX(1,0) using the following notation:

Yt = AYt−1 + Bzt + Ut, (9)

where the definitions of Yt,A,B, and Ut are found in Lütkepohl (2005).9 From the VARX(1,0)

representation, the multiplier matrices Mi (those which reflect the impact of exogenous variables on

the whole system) and the impulse response matrices φi can be computed as follows:

Mi = J1A
iB (10)

φi = J1A
iJ ′1 (11)

2.3 IRF Confidence Intervals

For the construction of the IRF confidence intervals, we propose using a “pseudo-residual” based

bootstrap. Namely, the residuals ε1t can be recovered by following steps (2) and (3) of the IITV

8Technically, the delta method is asymptotically correct only for the first step of the IITV algorithm. However, we
apply it in further iterations of the method, making the underlying assumption that the sampling variability of Int∗∗t
has no effect on the asymptotic validity of the method.

9See Lütkepohl (2005), page 403.
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estimation procedure. Finally, once the series of ε̂1 has been recovered and using ε̂2, a traditional

residual-based bootstrap is implemented. For further details, see Efron and Tibshirani (1994).

3 Simulation Exercises

In this section, we analyze the performance of the IITV estimator, and compare results to an

approach we call Naive. The Naive estimation method consists of estimating each equation in the

system separately, i.e. it intentionally ignores the covariance between policies. More specifically, it

consists of using ordinary least squares and a Type-I Tobit model to estimate the IRI and FXI

policy functions, respectively. In addition, in order to better illustrate the benefits of our iterating

method, we further present results of the first step of the IITV algorithm, for which we refer to

as Step-1.10 We thus believe that the comparison between estimates using the IITV and Naive

methods will shed light over some of the perils of estimating separate policy reaction functions when

faced with a significant level of interdependence.

In the simulation exercises that follow we consider samples of 100, 500, and 1000 observations.

For each sample size, we use different levels of covariance between the error terms of the two policy

reaction functions (σ12 = 0.0, 0.4, 0.8). Also, 5000 replications are performed for each simulation

exercise. Finally, in Appendix A, we present results assuming non-Gaussian distributions of the

error term (see equation 1).

The data generating process we consider is a bivariate latent VAR model in which one of the

series involved in the analysis (FXI) is censored. In the baseline case, three exogenous regressors

are considered, since most papers that estimate policy functions include at least this number of

covariates. Namely, variables that are often considered include some measure of exchange rate

misalignment, inflation, and output (see Edison (1993) and Sarno and Taylor (2001)).11 The data

generating process is described as:

[
Int∗t

rt

]
=

[
α1

α2

]
+

[
β11 β12

β21 β22

][
Int∗t−1

rt−1

][
γ11 γ12 γ13

γ21 γ22 γ23

]
z1t

z2t

z3t

+

[
ε1t

ε2t

]
(12)

In the baseline case, we only include one lag of the dependent variable. We do this following Romer

and Romer (2004) who argue (for the US Federal Reserve) that the inclusion of the lagged policy

10The Step-1 estimation is similar to the Naive approach, but instead uses restrictions for (b,B′1, σC) to retrieve
the coefficients of (A′2, σ12, σ22).

11Nonetheless, in Appendix A we present simulation results for cases in which there is only one exogenous variable,
and find similar results.
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rate captures tendencies toward mean reversion. The specific parameters used in the simulation

exercises can be found in Appendix B.

In Tables 1-6, we report results of the simulation exercises that assume multivariate normality

of the error term. For all cases, we compute both bias and root-mean-square-error (RMSE) for

each of the parameters. Tables 1-3 show results for the regressor coefficients (αs, βs,s, γs,l), where

s ∈ {1, 2} and l ∈ {1, 2, 3}. Tables 4-6 show results for the variance-covariance matrix of the error

term.

Table 1 presents the results for the case in which policy shocks are independent (σ12 = 0). We

find that the IITV method yields better results in terms of bias and RMSE in most coefficients and

across all sample sizes. Additionally, Table 4 shows that the estimated variance-covariance matrix of

the error term under the IITV method outperforms that of the Naive approach. For example, both

the bias and RMSE of the variances (σ11, σ22) under the IITV method are lower than those of the

Naive approach. Note however, that we cannot compare estimates of the covariance between policies

since -by construction- the naive approach assumes a zero covariance. Nonetheless, we conclude that

even when there is no correlation between policy shocks the IITV method outperforms the naive

approach. This follows from the fact that while the conditional error (ε1t | ε2t) does not provide any

additional information, the truncated error (ε1t | ε1t < (η̂ −A′1xt)) does so.

Tables 2 and 3 show estimates for a policy covariance of 0.4 and 0.8, respectively. These tables

suggest that the IITV method improves (reduces bias and RMSE) and greatly outperforms the

Naive approach. In fact, even the Step− 1 estimator outperforms the Naive approach. We note

that the main differences are found in the coefficients of the lagged endogenous variables, which are

the main driving forces for the impulse-response functions.

Estimation results for the variance-covariance matrix (again for a policy covariance of 0.4 and

0.8) are presented in Tables 5 and 6. The covariance estimates (σ12) are remarkably close to the real

values of 0.4 and 0.8, respectively. For example, with a sample size of 500, the estimated covariance

under the IITV has a bias of only −0.038 (Table 5) and −0.019 (Table 6). Furthermore, as seen in

Table 6 the Naive method behaves poorly when estimating the variance of the error term (σ11, σ22),

with a bias of (0.193, 0.079) compared to a bias of (0.037, 0.015) under the IITV method.

In sum, these results highlight the central result of our investigation which is that as the

correlation between shocks increases (in absolute value), the IITV increasingly outperforms the

Naive approach. It is easy to note that the IITV uses the dependence between policies to improve

over the estimates. Formally, consider the conditional distribution of ε1 given ε2, assuming bivariate

9



normality:12

f(ε1|ε2) ∼ N
(
σ11
σ22

ρε2, (1− ρ2)σ211
)
, (13)

where ρ is the correlation coefficient between ε1 and ε2. It follows from the above equation that, as

the correlation coefficient (ρ) approaches unity, the variance of the conditional distribution goes to

zero. This implies that by conditioning the error term of the FXI equation on that of the IRI

equation, it provides all the information required to obtain a residual from the censored equation.

As such, it becomes clear that the performance of the IITV estimator improves as the correlation

between shocks increases.

In Appendix A, we present further simulation exercises. Tables 9-20 show the robustness

of the IITV method under the assumption of non-Gaussean errors. Particularly, Tables 9-14

consider multivariate t-distributions with 5 degrees of freedom, while Tables 15-20 consider the same

t-distribution with 30 degrees of freedom. Finally, in Tables 21-23, we consider a data generating

process with only one exogenous regressor. As shown, results of these exercises are very similar to

the main case of Tables 1-6. Hence, the IITV method (and more importantly, its dominance over

the naive approach) is robust to the different distributional assumptions as well as to the different

specifications regarding the number of covariates.

4 Results

In our empirical application we center our analysis on Turkey and Colombia, two emerging market

economies that follow an inflation targeting regime. Both countries have also conducted frequent

and widespread foreign exchange intervention in order to target exchange rate behavior, so monetary

policy is based on a two-objective, two-instrument framework. Our results can thus be compared to

the findings of the growing empirical literature on these countries.13

Our data, of proprietary nature, come directly from both the Central Bank of Turkey and

the Central Bank of Colombia. They comprise the timing and amount of both foreign exchange

and interest rate intervention. Additionally, we observe the internal forecasts (and nowcasts) of

variables such as inflation and output that each central bank used when setting their policy decisions.

The data cover the period of February 2002 through May 2010 for the Turkish case (9 years), and

of February 1999 through February 2010 (11 years) for the Colombian case. Prior to these dates, a

more rigid exchange rate regime was implemented in both countries. Also, following 2010, both

12See Johnson et al. (1994).
13Empirical studies applied to the Turkish case include: Guimaraes and Karacadag (2004), Herrera and Ozbay

(2005), Akinci et al. (2006), and Onder and Villamizar-Villegas (2015). Alternatively, studies centered in the Colombian
case include: Uribe and Toro (2005), Kamil (2008), Rincón and Toro (2010), and Villamizar-Villegas (2015).
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countries adopted additional monetary instruments: a reserve option mechanism and an interest rate

corridor in Turkey, and daily foreign exchange interventions in Colombia (see Ordonez-Callamand

et al. (2016)).

For the Colombian case, we use purchases of USD conducted in the spot market (22.8 billion),

as well as purchases through foreign exchange rate options (3.3 billion). Alternatively, for the

Turkish case, we use optional purchases (20.4 billion), which consisted of a discretionary amount of

trading that took place during the day of an announced auction.14 In Appendix C, we provide a

detailed description of each variable used for both Turkey and Colombia.

In the exercises that follow we report: (i) Estimation results, (ii) Impulse Response Functions,

and (iii) multipliers of the exogenous variables, for both the IITV method and the naive approach,

as described in Section 3.15

4.1 Colombia

Table 7 shows the estimation results for the colombian case. As shown, coefficients for the IITV

and Naive methodologies are relatively similar, suggesting that conditional on the information set,

the covariance between policies is sufficiently small so as not to generate a large bias among the

estimates. This result is consistent with the findings of Villamizar-Villegas (2015), who argues that

policies in Colombia are conditionally independent “due to the inclusion of internal forecasts as

control variables.” Furthermore, our estimation results for the variance-covariance matrix of the

error term under the IITV method yield the following:

Σ̂ =

[
0.104 −0.01

−0.01 0.068

]

which confirms the low covariance (σ12) between policy shocks and also reports a small variance of

each shock (σ11, σ22). However, a few differences stand out. For instance, the intercept is significant

under the Naive approach, but not under the IITV method. More importantly, the policy rate (rt)

positively reacts to inflation (as in any version of the Taylor rule) under the IITV method, but it is

not significant under the Naive approach.16

14We exclude unannounced purchases and sales for the Turkish case, due to the few observations available.
15For the naive approach, the cross IRFs correspond to the multipliers of the respective lagged policy variable.

Also, the following considerations should be taken into account when interpreting the IRFs and multipliers: (i) We use
the Choleski decomposition so that FXI is more exogenous than IRI; (ii) the IRF response in horizon t+ 0 can only
be interpreted using the estimated multipliers; (iii) the time horizon is measured in meetings of the board of directors
as in Romer and Romer (2004); and (iv) in the bootstrapping used in building confidence intervals, we construct the
standard deviation using the robust scale estimator Sn, as in Rousseeuw and Croux (1993).

16Results also show that inflation is significant in the FXI policy function under the Naive approach, but not
under the IITV method. Given that USD purchases were fully sterilized, we believe that they should play little (if
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In sum, we find that, under the IITV method, the Central Bank of Colombia intervened in the

foreign exchange market by purchasing foreign currency (to depreciate domestic currency) whenever

the exchange rate appreciated relative to its forecasted equilibrium value (ERM), and whenever

the central bank was a net debtor with respect to the financial system (NetPos). These results

are similar to those found in Kamil (2008) and Echavarŕıa et al. (2013). Alternatively, the bank

conducted contractionary monetary policy whenever inflation and output (IPI) increased.17

Figures 1 and 2 depict the IRFs of the FXI and IRI monetary shocks, under the IITV

and Naive methods, respectively. Results again are fairly similar, showing a null effect for the

cross IRFs. The persistence of each shock, which lasts approximately two periods (recall that

periods are measured as the time elapsed between meeting dates of the board of directors) vary

slightly across methodologies. Namely, under the Naive approach, the persistence of the FXI

(IRI) policy shock is slightly lower (higher) than under the IITV method. We believe however, that

the IITV estimates have higher precision (see Section 3), which reflects on the narrower confidence

intervals.

Figures 3 and 4 depict the multipliers of the exogenous variables. Results again show narrower

bands for the IITV estimates. Also, note that the impact of inflation on the policy rate is significant

under the IITV , but not under the Naive approach, which is consistent with the results reported

in Table 7.

4.2 Turkey

Results for the Turkish case mostly differ in that we find a larger covariance between the policy

shocks. In particular, the estimation of the variance-covariance matrix yields:

Σ̂ =

[
0.423 0.141

0.141 1.063

]

In fact, Table 8 shows that the lag policy rate (Lag IRI) is significant (for the IRI policy

function) under the Naive approach, but not under the IITV method. Similarly, output growth

(IPI) is significant (for the FXI policy function) under the Naive approach, but not under the IITV

method. In sum, we find that the Central Bank of Turkey intervened in the foreign exchange market

(by purchasing foreign currency) whenever the exchange rate appreciated (ERM). Alternatively,

the bank conducted contractionary monetary policy whenever inflation (relative to the yearly

any) part in the decision process to intervene.
17This setting, like in Romer and Romer (2004), assumes that unemployment act through output growth, i.e. Okun’s

law.
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target) and output increased. Results that are most similar to ours can be found in Onder and

Villamizar-Villegas (2015).

Figures 5 and 6 depict the IRFs of the FXI and IRI monetary shocks under the IITV and

Naive methods, respectively. Besides having narrower confidence bands, the IITV method shows a

smaller persistence of shocks, especially that of IRI. Finally, Figures 7 and 8 depict the multipliers

of the corresponding exogenous variables. Although fairly similar, the impact of: (i) inflation on

IRI, (ii) output on FXI, and (iii) output on IRI, turn out larger (and significant over longer

periods) with the Naive approach. All multipliers are consistent with the results reported in Table

8.

5 Conclusions

Central bank intervention typically entails a specific number of instruments and at most the same

number of objectives in order to have an effective monetary policy schedule. In some cases, however,

policy instruments are inadvertently collinear, leading to monetary indeterminacy and identification

failures. Paradoxically, most empirical studies have shied away from this dependence, to the point

of being almost completely ignored.

In this paper we shed some light on this issue, by clearly detailing a procedure through which

policy shocks can be correctly identified. The novelty of our proposed method is that it introduces

a Tobit model within a VAR. Thus, the model can be easily estimated using only least squares and

a maximum likelihood function. Also, the impulse-response analysis can be carried out as in the

traditional time-series setting and can be extended to a structural framework.

We carry out an extensive simulation study and find that our method outperforms a benchmark

case of estimating policy functions separately. This finding is robust across different sample sizes,

distributional assumptions and number of exogenous variables. Our central result is that, as the

covariance between shocks increases, so does the performance of our method. In our empirical

approach we estimate the policy covariance for the case of Colombia and Turkey. In the Colombian

case, we find that the policy rate positively reacts to inflation under our proposed method, but not

under the benchmark approach. Alternatively, in the Turkish case we find that output is relevant to

determine the policy rate but not to determine foreign exchange purchases. Finally, we find that

monetary shocks in Turkey have lower persistence when estimated with our iterative method.

We believe that our investigation can provide a clear and accessible toolkit for central banks,

especially those that carry numerous objectives at hand. Studies that can profit most from our

investigation are those centered in economies in which policy covariance is high, e.g. where the same

monetary committees decide over multiple objectives.

13
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Echavarŕıa, J. J., L. F. Melo, S. Téllez, and M. Villamizar (2013): “The impact of
pre-announced day-to-day interventions on the Colombian exchange rate,” BIS Working Papers
428, Bank for International Settlements.

Edison, H. (1993): “The Effectiveness of Central-Bank Intervention: A Survey of the Litterature
after 1982,” Princeton Studies in International Economics 18, Departement of Economics Princeton
University.

Efron, B. and R. Tibshirani (1994): An Introduction to the Bootstrap, Chapman & Hall/CRC
Monographs on Statistics & Applied Probability, Taylor & Francis.

Fleming, M. J. (1962): “Domestic Financial Policies Under Fixed and Under Floating Exchange
Rates,” Tech. rep.

Guimaraes, R. and C. Karacadag (2004): “The Empirics of Foreign Exchange Intervention in
Emerging Market Countries: The Cases of Mexico and Turkey,” IMF Working Paper 04/123.

Hahn, J. and G. Kuersteiner (2010): “Stationarity and mixing properties of the dynamic Tobit
model,” Economics Letters, 107, 105 – 111.

14



Hamilton, J. D. (1994): Time Series Analysis, Princeton University Press.

Hammond, G. (2012): State of the art of inflation targeting, no. 29 in Handbooks, Centre for
Central Banking Studies, Bank of England.

Herrera, A. M. and P. Ozbay (2005): “A Dynamic Model of Central Bank Intervention,”
Central Bank of the Republic of Turkey, Working Papers 0501.

Johnson, N. L., S. Kotz, and N. Balakrishnan (1994): Continuous Univariate Distributions,
Vol. 1, Wiley Series in Probability and Statistics.

Kamil, H. (2008): “Is Central Bank Intervention Effective Under Inflation Targeting Regimes? the
Case of Colombia,” IMF Working Papers 08/88, International Monetary Fund.

Klein, M. W. (2013): “Chapter 10 - Capital Mobility and Exchange Rate Regimes,” in Handbook
of Safeguarding Global Financial Stability, ed. by G. Caprio, P. Bacchetta, J. R. Barth, T. Hoshi,
P. R. Lane, D. G. Mayes, A. R. Mian, and M. Taylor, San Diego: Academic Press, 97 – 105.

Lee, L. (1999): “Estimation of dynamic and ARCH Tobit models,” Journal of Econometrics, 92,
355 – 390.

Levy-Yeyati, E. and F. Sturzenegger (2007): “Fear of Appreciation,” Business School Working
Papers fearapp, Universidad Torcuato Di Tella.

Lütkepohl, H. (2005): New Introduction to Multiple Time Series Analysis, Springer-Verlag Berlin
Heidelberg.

Meese, R. A. and K. Rogoff (1988): “ Was It Real? The Exchange Rate-Interest Differential
Relation over the Modern Floating-Rate Period,” Journal of Finance, 43, 933–48.

Menkhoff, L. (2010): “High-Frequency Analysis Of Foreign Exchange Interventions: What Do
We Learn?” Journal of Economic Surveys, 24, 85–112.

Mundell, R. A. (1963): “Capital Mobility and Stabilization Policy under Fixed and Flexible
Exchange Rates,” The Canadian Journal of Economics and Political Science, 29, 475–485.

Neely, C. J. (2005): “An analysis of recent studies of the effect of foreign exchange intervention,”
Review, 685–718.

Onder, Y. K. and M. Villamizar-Villegas (2015): “Simultaneous Monetary Policies in the
Context of the Trilemma: Evidence from the Central Bank of Turkey,” Borradores de Economia
893, Banco de la Republica de Colombia.

Ordonez-Callamand, D., M. Villamizar-Villegas, and L. F. Melo-Velandia (2016):
“Foreign Exchange Intervention Revisited: A New Way of Estimating Censored Models,” Borradores
de Economia 972, Banco de la Republica de Colombia.

Ostry, D., R. Ghosh, and M. Chamon (2012): “Two Targets, Two Instruments: Monetary and
Exchange Rate Policies In Emerging Market Economies,” IMF Staff Discussion Note, 12.

Rincón, H. and J. Toro (2010): “Are Capital Controls and Central Bank Intervention Effective?”
Borradores de Economia 625, Banco de la Republica de Colombia.

Romer, C. D. and D. H. Romer (2004): “A New Measure of Monetary Shocks: Derivation and
Implications,” American Economic Review, 94(4), 1055–1084.

15



Rousseeuw, P. J. and C. Croux (1993): “Alternatives to the Median Absolute Deviation,”
Journal of the American Statistical Association, 88, 1273–1283.

Sarno, L. and M. P. Taylor (2001): “The Microstructure of the Foreign-Exchange Market: A
Selective Survey of the Literature,” Princeton Studies in International Economics 89, Department
of Economics Princeton University.

Uribe, J. D. and J. Toro (2005): “Foreign exchange market intervention in Colombia,” in Foreign
exchange market intervention in emerging markets: motives, techniques and implications, ed. by
B. f. I. Settlements, Bank for International Settlements, vol. 24, 139–49.

Villamizar-Villegas, M. (2015): “Identifying the Effects of Simultaneous Monetary Policy
Shocks,” Contemporary Economic Policy, doi: 10.1111/coep.12111.

Villamizar-Villegas, M. and D. Perez-Reyna (2017): “A Theoretical Approach to Sterilized
Foreign Exchange Intervention,” Journal of Economic Surveys, 31, 343–365.

16



FIGURES

Figure 1: IRFs in Colombia using our IITV method
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Figure 2: IRFs in Colombia using a Naive method
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Figure 3: Multipliers in Colombia using our IITV method
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Figure 4: Multipliers in Colombia using a Naive method
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Figure 5: IRFs in Turkey using our IITV method
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Figure 6: IRFs in Turkey using a Naive method
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Figure 7: Multipliers in Turkey using our IITV method
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Figure 8: Multipliers in Turkey using a Naive method
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TABLES

Table 1: Multivariate Normal Errors, 0 Covariance Simulation

α1 α2 β11 β12 β21 β22 γ11 γ12 γ13 γ21 γ22 γ23

T = 100

IITV
Bias 0.035 0.021 -0.088 -0.021 -0.047 -0.024 0.013 -0.001 0.000 -0.003 -0.011 0.003
RMSE 0.549 0.186 0.176 0.116 0.158 0.098 0.190 0.082 0.123 0.073 0.128 0.073

Step-1
Bias -0.962 0.552 0.061 -0.066 -0.192 0.097 0.039 -0.022 0.011 -0.005 -0.020 0.019
RMSE 1.147 0.694 0.228 0.187 0.223 0.110 0.123 0.069 0.116 0.063 0.119 0.064

Naive
Bias -0.954 0.552 0.062 -0.066 -0.187 0.097 0.038 -0.022 0.012 -0.005 -0.019 0.019
RMSE 1.138 0.694 0.227 0.187 0.217 0.110 0.122 0.069 0.115 0.063 0.118 0.064

T = 500

IITV
Bias 0.029 0.013 -0.025 -0.003 -0.008 0.000 0.000 0.000 0.002 0.000 0.002 0.000
RMSE 0.097 0.059 0.059 0.041 0.051 0.036 0.043 0.029 0.036 0.023 0.038 0.023

Step-1
Bias -0.936 0.442 0.117 -0.052 -0.171 0.100 0.027 -0.014 0.009 0.001 -0.008 0.007
RMSE 0.959 0.464 0.146 0.087 0.176 0.103 0.054 0.030 0.042 0.022 0.043 0.023

Naive
Bias -0.932 0.442 0.117 -0.052 -0.168 0.100 0.026 -0.014 0.010 0.001 -0.008 0.007
RMSE 0.956 0.464 0.146 0.087 0.174 0.103 0.054 0.030 0.042 0.022 0.043 0.023

T = 1000

IITV
Bias 0.033 0.013 -0.020 -0.002 -0.005 0.003 -0.002 0.000 0.001 0.000 0.003 0.000
RMSE 0.075 0.043 0.042 0.029 0.035 0.025 0.032 0.021 0.025 0.016 0.028 0.017

Step-1
Bias -0.949 0.445 0.112 -0.046 -0.169 0.099 0.022 -0.015 0.001 0.002 0.006 0.004
RMSE 0.961 0.458 0.128 0.067 0.172 0.101 0.042 0.025 0.029 0.015 0.030 0.017

Naive
Bias -0.945 0.445 0.112 -0.046 -0.167 0.099 0.021 -0.015 0.002 0.002 0.006 0.004
RMSE 0.957 0.458 0.128 0.067 0.17 0.101 0.041 0.025 0.029 0.015 0.03 0.017

Authors’ calculations. Bias denotes the bias of the estimator, built as β̂ − β. RMSE denotes the root-mean-square
error. Parameter names as in equation 12. IITV stands for Instrumental Iterative Tobit VAR; Step-1 and Naive
methods as defined in Section 2.
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Table 2: Multivariate Normal Errors, 0.4 Covariance Simulation

α1 α2 β11 β12 β21 β22 γ11 γ12 γ13 γ21 γ22 γ23

T = 100

IITV
Bias 0.039 0.022 -0.069 -0.023 -0.032 -0.020 0.007 0.002 0.000 -0.001 -0.011 0.000
RMSE 0.329 0.182 0.143 0.097 0.124 0.082 0.122 0.083 0.115 0.075 0.124 0.072

Step-1
Bias -1.095 0.677 0.144 -0.124 -0.141 0.078 0.035 -0.018 0.016 -0.004 -0.016 0.017
RMSE 1.245 0.792 0.249 0.210 0.174 0.093 0.117 0.066 0.114 0.063 0.117 0.062

Naive
Bias -1.117 0.677 0.145 -0.124 -0.151 0.078 0.035 -0.018 0.016 -0.004 -0.018 0.017
RMSE 1.269 0.792 0.251 0.210 0.184 0.093 0.119 0.066 0.115 0.063 0.119 0.062

T = 500

IITV
Bias 0.029 0.012 -0.024 -0.004 -0.007 0.001 0.000 0.000 0.002 0.000 0.002 -0.001
RMSE 0.095 0.058 0.051 0.034 0.043 0.030 0.041 0.028 0.035 0.023 0.037 0.023

Step-1
Bias -1.052 0.539 0.190 -0.103 -0.123 0.080 0.023 -0.013 0.013 0.001 -0.008 0.007
RMSE 1.070 0.557 0.206 0.124 0.130 0.083 0.052 0.029 0.042 0.022 0.043 0.023

Naive
Bias -1.072 0.539 0.194 -0.103 -0.130 0.080 0.023 -0.013 0.012 0.001 -0.009 0.007
RMSE 1.090 0.557 0.211 0.124 0.137 0.083 0.053 0.029 0.042 0.022 0.043 0.023

T = 1000

IITV
Bias 0.031 0.012 -0.019 -0.002 -0.005 0.003 -0.001 0.000 0.001 0.000 0.002 0.000
RMSE 0.073 0.042 0.037 0.024 0.030 0.021 0.031 0.021 0.025 0.016 0.027 0.017

Step-1
Bias -1.073 0.544 0.187 -0.097 -0.123 0.079 0.019 -0.014 0.003 0.002 0.008 0.003
RMSE 1.083 0.554 0.195 0.108 0.126 0.080 0.039 0.024 0.028 0.016 0.030 0.017

Naive
Bias -1.096 0.544 0.192 -0.097 -0.129 0.079 0.020 -0.014 0.002 0.002 0.007 0.003
RMSE 1.106 0.554 0.2 0.108 0.132 0.08 0.04 0.024 0.029 0.016 0.031 0.017

Authors’ calculations. Bias denotes the bias of the estimator, built as β̂ − β. RMSE denotes the root-mean-square
error. Parameter names as in equation 12. IITV stands for Instrumental Iterative Tobit VAR; Step-1 and Naive
methods as defined in Section 2.
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Table 3: Multivariate Normal Errors, 0.8 Covariance Simulation

α1 α2 β11 β12 β21 β22 γ11 γ12 γ13 γ21 γ22 γ23

T = 100

IITV
Bias 0.012 0.013 -0.050 -0.025 -0.028 -0.021 0.007 0.003 -0.001 -0.001 -0.011 -0.001
RMSE 0.291 0.171 0.111 0.084 0.106 0.075 0.111 0.084 0.104 0.076 0.114 0.075

Step-1
Bias -1.155 0.786 0.189 -0.175 -0.101 0.062 0.037 -0.016 0.021 -0.005 -0.013 0.017
RMSE 1.277 0.885 0.267 0.242 0.135 0.078 0.108 0.065 0.107 0.062 0.110 0.062

Naive
Bias -1.218 0.786 0.199 -0.175 -0.124 0.062 0.036 -0.016 0.020 -0.005 -0.017 0.017
RMSE 1.353 0.885 0.279 0.242 0.161 0.078 0.118 0.065 0.115 0.062 0.119 0.062

T = 500

IITV
Bias 0.017 0.007 -0.016 -0.004 -0.006 -0.001 0.000 0.000 0.001 0.000 0.001 -0.001
RMSE 0.080 0.054 0.038 0.029 0.034 0.026 0.036 0.028 0.031 0.023 0.033 0.023

Step-1
Bias -1.104 0.612 0.228 -0.143 -0.086 0.063 0.024 -0.011 0.017 0.001 -0.011 0.007
RMSE 1.118 0.628 0.240 0.158 0.093 0.067 0.049 0.028 0.040 0.021 0.041 0.023

Naive
Bias -1.170 0.612 0.250 -0.143 -0.101 0.063 0.022 -0.011 0.014 0.001 -0.010 0.007
RMSE 1.186 0.628 0.261 0.158 0.109 0.067 0.052 0.028 0.043 0.021 0.044 0.023

T = 1000

IITV
Bias 0.019 0.007 -0.013 -0.002 -0.004 0.001 -0.001 0.000 0.000 0.000 0.001 0.000
RMSE 0.059 0.039 0.027 0.020 0.024 0.018 0.028 0.021 0.021 0.016 0.024 0.017

Step-1
Bias -1.119 0.616 0.223 -0.135 -0.088 0.061 0.017 -0.013 0.003 0.002 0.009 0.003
RMSE 1.126 0.625 0.229 0.143 0.091 0.063 0.037 0.023 0.026 0.015 0.028 0.016

Naive
Bias -1.198 0.616 0.247 -0.135 -0.100 0.061 0.018 -0.013 0.002 0.002 0.007 0.003
RMSE 1.206 0.625 0.253 0.143 0.105 0.063 0.04 0.023 0.029 0.015 0.031 0.016

Authors’ calculations. Bias denotes the bias of the estimator, built as β̂ − β. RMSE denotes the root-mean-square
error. Parameter names as in equation 12. IITV stands for Instrumental Iterative Tobit VAR; Step-1 and Naive
methods as defined in Section 2.
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Table 4: Multivariate normal errors, 0 covariance (Variance-covariance matrix estimation)

T = 100 T = 500 T = 1000

σ11 σ12 σ22 σ11 σ12 σ22 σ11 σ12 σ22

IITV Bias -0.014 -0.054 0.033 0.064 -0.044 0.030 0.069 -0.042 0.028
RMSE 2.454 0.280 0.169 0.158 0.087 0.071 0.123 0.068 0.055

Step-1 Bias 0.036 -0.100 0.068 0.151 -0.098 0.060 0.157 -0.096 0.058
RMSE 0.335 0.212 0.171 0.214 0.124 0.090 0.191 0.110 0.075

Naive Bias 0.027 - 0.068 0.149 - 0.060 0.155 - 0.058
RMSE 0.331 - 0.171 0.212 - 0.090 0.189 - 0.075

Authors’ calculations. Bias denotes the bias of the estimator, built as β̂ − β. RMSE denotes the root-
mean-square error. Parameter names (σ11, σ12, σ22) are defined in Section 2. IITV stands for Instrumental
Iterative Tobit VAR; Step-1 and Naive methods as defined in Section 2.

Table 5: Multivariate normal errors, 0.4 covariance (Variance-covariance matrix estimation)

T = 100 T = 500 T = 1000

σ11 σ12 σ22 σ11 σ12 σ22 σ11 σ12 σ22

IITV Bias -0.047 -0.047 0.025 0.060 -0.038 0.027 0.066 -0.037 0.027
RMSE 0.366 0.215 0.168 0.155 0.086 0.070 0.121 0.066 0.053

Step-1 Bias 0.052 -0.114 0.079 0.169 -0.113 0.071 0.176 -0.115 0.069
RMSE 0.342 0.222 0.179 0.228 0.137 0.098 0.208 0.127 0.084

Naive Bias 0.045 - 0.079 0.174 - 0.071 0.184 - 0.069
RMSE 0.337 - 0.179 0.233 - 0.098 0.215 - 0.084

Authors’ calculations. Bias denotes the bias of the estimator, built as β̂ − β. RMSE denotes the root-
mean-square error. Parameter names (σ11, σ12, σ22) are defined in Section 2. IITV stands for Instrumental
Iterative Tobit VAR; Step-1 and Naive methods as defined in Section 2.

Table 6: Multivariate normal errors, 0.8 covariance (Variance-covariance matrix estimation)

T = 100 T = 500 T = 1000

σ11 σ12 σ22 σ11 σ12 σ22 σ11 σ12 σ22

IITV Bias -0.009 -0.022 0.012 0.037 -0.019 0.015 0.038 -0.019 0.014
RMSE 0.360 0.220 0.167 0.132 0.080 0.066 0.095 0.058 0.048

Step-1 Bias 0.105 -0.115 0.089 0.186 -0.119 0.079 0.186 -0.125 0.076
RMSE 0.355 0.233 0.186 0.238 0.146 0.104 0.213 0.138 0.091

Naive Bias 0.062 - 0.089 0.193 - 0.079 0.204 - 0.076
RMSE 0.338 - 0.186 0.249 - 0.104 0.232 - 0.091

Authors’ calculations. Bias denotes the bias of the estimator, built as β̂ − β. RMSE denotes the root-
mean-square error. Parameter names (σ11, σ12, σ22) are defined in Section 2. IITV stands for Instrumental
Iterative Tobit VAR; Step-1 and Naive methods as defined in Section 2.

28



Table 7: Estimation results for Colombia

IIVT Naive
FXI S.d IRI Est S.d FXI S.d IRI Est S.d

Intercept -0.113 0.089 -0.143∗∗∗ 0.055 -0.210∗∗∗ 0.075 -0.188∗∗∗ 0.059
Lag FXI 0.429∗∗∗ 0.102 -0.040 0.071 0.545∗∗∗ 0.138 -0.010 0.133
Lag IRI 0.149 0.167 0.319∗∗∗ 0.093 0.086 0.119 0.323∗∗∗ 0.081
Inf 0.168 0.140 0.214∗∗ 0.095 0.212∗ 0.111 0.025 0.081
Ipi -0.012 0.009 0.019∗∗∗ 0.006 -0.001 0.007 0.026∗∗∗ 0.005
ERM -0.203∗ 0.113 0.059 0.067 -0.176∗ 0.094 0.026 0.774
NetPos 0.008∗∗∗ 0.002 0.001 0.002 0.007∗∗∗ 0.002 0.002 0.002
Dum2004 0.354∗∗∗ 0.132 -0.090 0.093 0.333∗∗∗ 0.116 -0.080 0.111
Dum2005 0.532∗∗∗ 0.138 -0.027 0.102 0.520∗∗∗ 0.123 -0.020 0.122
Dum2007 0.284∗ 0.153 -0.048 0.099 -1.150∗∗∗ 0.105 -0.050 0.120

Authors’ calculations. *, **, and *** indicate significance at the 10%, 5 %, and 1% levels, respectively. S.d
denotes the standard deviation. IITV stands for Instrumental Iterative Tobit VAR. The Naive method consists
of estimating each equation separately as described in Section 2. Only significant year dummies (Dumyear) are
reported, and correspond to years with marked exchange rate appreciation.

Table 8: Estimation results for Turkey

IIVT Naive
FXI S.d IRI S.d FXI Est S.d IRI Est S.d

Intercept 0.448 0.287 -1.075∗∗∗ 0.421 0.148 0.266 -1.238∗∗∗ 0.332
Lag FXI -0.337∗∗ 0.152 0.007 0.217 -0.371∗∗ 0.169 0.153 0.239
Lag IRI 0.259∗∗ 0.130 0.184 0.174 0.222∗∗ 0.104 0.390∗∗∗ 0.134
Inf -0.034 0.056 0.169∗∗ 0.077 0.053 0.048 0.175∗∗∗ 0.060
Ipi 0.031 0.021 0.064∗∗ 0.029 0.042∗∗ 0.019 0.058∗∗∗ 0.023
ERM -2.342∗∗∗ 0.767 0.782 0.886 -1.784∗∗∗ 0.653 0.774 0.741
Dum2007 0.825∗ 0.432 -0.473 0.649 0.825∗ 0.426 -0.422 0.604
Dum2009 -0.521 0.541 1.449∗ 0.799 0.015 0.491 1.695∗∗∗ 0.638
Dum2010 1.171∗∗ 0.513 -0.249 0.798 1.388∗∗∗ 0.502 0.039 0.728

Authors’ calculations. *, **, and *** indicate significance at the 10%, 5 %, and 1% levels, respectively. S.d
denotes the standard deviation. IITV stands for Instrumental Iterative Tobit VAR. The Naive method consists
of estimating each equation separately as described in Section 2. Only significant year dummies (Dumyear) are
reported, and correspond to years with marked exchange rate appreciation.
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Appendix A Robustness Checks of the IITV Method

Tables 9-23 present the results of imposing alternative distributional assumptions on the errors of
the VAR system. In essence, these exercises help test the sensitivity of our findings to violations of
multivariate normality. In brief, the conclusions remain similar: the IITV method performs better
in terms of both RMSE and Bias for all parameters as well as for the variance-covariance matrix.
This gain is more evident in the coefficients of the lagged dependent variables.

In addition, it remains true that, as implied by equation 13, the IITV method increasingly
outperforms the Naive estimation when the covariance between the two policy shocks increases.
Moreover, even when the errors follow a distribution with heavier tails (e.g. t-distribution with 5
degrees of freedom), there is evidence that the algorithm provided in Section 2 improves over the
common practice. Nonetheless, we argue that the inclusion of exogenous variables is crucial for the
IITV to outperform alternative methods. As such, we conduct further simulations exercises with
the inclusion of only one regressor, presented in tables 21-23.18 We note that the IITV method still
outperforms the Naive method, which again provides evidence of robustness in our results.

Table 9: Multivariate t-distribution with 5 degrees of freedom, 0 Covariance Simulation

α1 α2 β11 β12 β21 β22 γ11 γ12 γ13 γ21 γ22 γ23

T = 100

IITV
Bias -0.004 0.001 -0.080 -0.012 -0.043 -0.018 0.017 0.000 -0.003 -0.001 -0.022 0.001
RMSE 0.376 0.181 0.169 0.110 0.159 0.095 0.128 0.081 0.122 0.071 0.134 0.071

Step-1
Bias -1.050 0.519 0.072 -0.055 -0.197 0.100 0.046 -0.020 0.010 -0.003 -0.032 0.017
RMSE 1.243 0.653 0.231 0.175 0.231 0.113 0.129 0.068 0.115 0.063 0.131 0.063

Naive
Bias -1.052 0.519 0.075 -0.055 -0.193 0.100 0.046 -0.020 0.011 -0.003 -0.031 0.017
RMSE 1.248 0.653 0.232 0.175 0.227 0.113 0.129 0.068 0.116 0.063 0.132 0.063

T = 500

IITV
Bias -0.007 -0.003 -0.024 0.002 -0.009 0.002 0.007 0.001 0.000 0.000 -0.006 0.000
RMSE 0.107 0.060 0.058 0.041 0.052 0.036 0.046 0.029 0.038 0.023 0.043 0.023

Step-1
Bias -1.009 0.433 0.126 -0.049 -0.175 0.101 0.035 -0.014 0.007 0.001 -0.016 0.007
RMSE 1.039 0.455 0.154 0.084 0.182 0.104 0.062 0.031 0.043 0.022 0.048 0.023

Naive
Bias -1.009 0.433 0.126 -0.049 -0.173 0.101 0.035 -0.014 0.007 0.001 -0.016 0.007
RMSE 1.039 0.455 0.155 0.084 0.180 0.104 0.062 0.031 0.043 0.022 0.048 0.023

T = 1000

IITV
Bias -0.005 -0.003 -0.019 0.002 -0.005 0.004 0.004 0.000 -0.002 0.000 -0.003 0.000
RMSE 0.075 0.043 0.042 0.029 0.036 0.025 0.034 0.021 0.027 0.016 0.031 0.017

Step-1
Bias -1.033 0.437 0.124 -0.044 -0.172 0.100 0.029 -0.015 -0.002 0.001 0.000 0.003
RMSE 1.047 0.449 0.139 0.066 0.175 0.101 0.047 0.025 0.030 0.016 0.032 0.017

Naive
Bias -1.031 0.437 0.125 -0.044 -0.169 0.100 0.029 -0.015 -0.002 0.001 0.000 0.003
RMSE 1.046 0.449 0.14 0.066 0.173 0.101 0.047 0.025 0.03 0.016 0.032 0.017

Authors’ calculations. Bias denotes the bias of the estimator, built as β̂ − β. RMSE denotes the root-mean-square
error. Parameter names as in equation 12. IITV stands for Instrumental Iterative Tobit VAR; Step-1 and Naive
methods as defined in Section 2.

18The one regressor is simulated by following an ARMA process with a t-distributed (5 d.f.) error term.
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Table 10: Multivariate t-distribution (5 d.f.), 0 covariance (Variance-covariance estimation)

T = 100 T = 500 T = 1000

σ11 σ12 σ22 σ11 σ12 σ22 σ11 σ12 σ22

IITV Bias 0.022 -0.045 0.030 0.165 -0.041 0.028 0.173 -0.039 0.031
RMSE 0.599 0.289 0.308 0.353 0.127 0.124 0.269 0.095 0.096

Step-1 Bias 0.111 -0.096 0.063 0.240 -0.093 0.057 0.254 -0.093 0.060
RMSE 0.601 0.280 0.291 0.390 0.151 0.135 0.327 0.126 0.110

Naive Bias 0.113 - 0.063 0.242 - 0.057 0.254 - 0.060
RMSE 0.673 - 0.291 0.400 - 0.135 0.335 - 0.110

Authors’ calculations. Bias denotes the bias of the estimator, built as β̂ − β. RMSE denotes the
root-mean-square error. Parameter names (σ11, σ12, σ22) are defined in Section 2. IITV stands for
Instrumental Iterative Tobit VAR; Step-1 and Naive methods as defined in Section 2.

Table 11: Multivariate t-distribution with 5 degrees of freedom, 0.4 Covariance Simulation

α1 α2 β11 β12 β21 β22 γ11 γ12 γ13 γ21 γ22 γ23

T = 100

IITV
Bias -0.004 0.002 -0.068 -0.015 -0.034 -0.017 0.017 0.002 -0.001 0.000 -0.022 0.000
RMSE 0.337 0.171 0.142 0.091 0.128 0.079 0.123 0.081 0.113 0.072 0.128 0.071

Step-1
Bias -1.157 0.644 0.145 -0.113 -0.148 0.082 0.045 -0.018 0.016 -0.004 -0.028 0.017
RMSE 1.318 0.751 0.250 0.196 0.183 0.096 0.124 0.067 0.114 0.062 0.128 0.062

Naive
Bias -1.194 0.644 0.148 -0.113 -0.160 0.082 0.046 -0.018 0.015 -0.004 -0.030 0.017
RMSE 1.364 0.751 0.253 0.196 0.196 0.096 0.128 0.067 0.117 0.062 0.132 0.062

T = 500

IITV
Bias -0.007 -0.002 -0.024 0.001 -0.009 0.002 0.006 0.001 -0.001 0.000 -0.006 0.000
RMSE 0.104 0.058 0.051 0.035 0.045 0.030 0.045 0.029 0.038 0.023 0.042 0.023

Step-1
Bias -1.118 0.526 0.196 -0.099 -0.130 0.082 0.032 -0.012 0.010 0.001 -0.016 0.007
RMSE 1.141 0.544 0.213 0.119 0.137 0.085 0.059 0.029 0.043 0.021 0.048 0.023

Naive
Bias -1.147 0.526 0.202 -0.099 -0.138 0.082 0.032 -0.012 0.009 0.001 -0.017 0.007
RMSE 1.172 0.544 0.219 0.119 0.146 0.085 0.060 0.029 0.044 0.021 0.049 0.023

T = 1000

IITV
Bias -0.004 -0.002 -0.020 0.002 -0.007 0.003 0.004 0.000 -0.002 0.000 -0.003 0.000
RMSE 0.074 0.042 0.037 0.025 0.031 0.021 0.033 0.021 0.027 0.016 0.030 0.017

Step-1
Bias -1.142 0.532 0.194 -0.093 -0.127 0.080 0.025 -0.014 -0.001 0.002 0.002 0.003
RMSE 1.153 0.542 0.202 0.104 0.131 0.081 0.045 0.024 0.030 0.016 0.032 0.016

Naive
Bias -1.172 0.532 0.200 -0.093 -0.134 0.080 0.027 -0.014 -0.002 0.002 0.000 0.003
RMSE 1.184 0.542 0.208 0.104 0.138 0.081 0.046 0.024 0.03 0.016 0.033 0.016

Authors’ calculations. Bias denotes the bias of the estimator, built as β̂ − β. RMSE denotes the root-mean-square
error. Parameter names as in equation 12. IITV stands for Instrumental Iterative Tobit VAR; Step-1 and Naive
methods as defined in Section 2.
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Table 12: Multivariate t-distribution (5 d.f.), 0.4 covariance (Variance-covariance estimation)

T = 100 T = 500 T = 1000

σ11 σ12 σ22 σ11 σ12 σ22 σ11 σ12 σ22

IITV Bias 0.027 -0.030 0.028 0.154 -0.025 0.025 0.161 -0.022 0.028
RMSE 0.578 0.311 0.314 0.336 0.130 0.123 0.255 0.092 0.095

Step-1 Bias 0.123 -0.099 0.076 0.249 -0.100 0.067 0.262 -0.100 0.071
RMSE 0.585 0.298 0.301 0.385 0.159 0.140 0.328 0.133 0.116

Naive Bias 0.137 - 0.076 0.268 - 0.067 0.280 - 0.071
RMSE 0.721 - 0.301 0.421 - 0.140 0.351 - 0.116

Authors’ calculations. Bias denotes the bias of the estimator, built as β̂ − β. RMSE denotes the
root-mean-square error. Parameter names (σ11, σ12, σ22) are defined in Section 2. IITV stands for
Instrumental Iterative Tobit VAR; Step-1 and Naive methods as defined in Section 2.

Table 13: Multivariate t-distribution with 5 degrees of freedom, 0.8 Covariance Simulation

α1 α2 β11 β12 β21 β22 γ11 γ12 γ13 γ21 γ22 γ23

T = 100

IITV
Bias -0.015 0.000 -0.048 -0.019 -0.027 -0.018 0.013 0.003 -0.001 0.000 -0.018 -0.001
RMSE 0.278 0.158 0.111 0.078 0.103 0.071 0.109 0.082 0.102 0.073 0.113 0.072

Step-1
Bias -1.188 0.743 0.189 -0.161 -0.105 0.066 0.043 -0.016 0.021 -0.005 -0.023 0.017
RMSE 1.310 0.833 0.265 0.224 0.139 0.081 0.111 0.066 0.106 0.062 0.115 0.062

Naive
Bias -1.299 0.743 0.202 -0.161 -0.134 0.066 0.045 -0.016 0.019 -0.005 -0.031 0.017
RMSE 1.453 0.833 0.280 0.224 0.172 0.081 0.126 0.066 0.117 0.062 0.131 0.062

T = 500

IITV
Bias -0.005 -0.002 -0.016 0.000 -0.008 0.000 0.005 0.001 -0.001 0.000 -0.004 0.000
RMSE 0.087 0.054 0.039 0.029 0.036 0.026 0.038 0.028 0.032 0.023 0.035 0.023

Step-1
Bias -1.141 0.595 0.230 -0.137 -0.092 0.065 0.030 -0.011 0.014 0.001 -0.017 0.007
RMSE 1.157 0.611 0.241 0.152 0.100 0.068 0.054 0.028 0.041 0.021 0.044 0.023

Naive
Bias -1.246 0.595 0.257 -0.137 -0.110 0.065 0.031 -0.011 0.011 0.001 -0.018 0.007
RMSE 1.269 0.611 0.269 0.152 0.120 0.068 0.059 0.028 0.044 0.021 0.050 0.023

T = 1000

IITV
Bias -0.003 -0.002 -0.014 0.001 -0.006 0.002 0.003 0.000 -0.001 0.000 -0.002 0.000
RMSE 0.063 0.038 0.029 0.021 0.025 0.018 0.028 0.020 0.023 0.016 0.025 0.017

Step-1
Bias -1.161 0.601 0.226 -0.130 -0.091 0.063 0.023 -0.013 -0.001 0.002 0.004 0.003
RMSE 1.168 0.609 0.232 0.138 0.095 0.065 0.040 0.023 0.027 0.015 0.028 0.016

Naive
Bias -1.276 0.601 0.255 -0.130 -0.107 0.063 0.026 -0.013 -0.002 0.002 0.000 0.003
RMSE 1.287 0.609 0.26 0.138 0.112 0.065 0.046 0.023 0.03 0.015 0.032 0.016

Authors’ calculations. Bias denotes the bias of the estimator, built as β̂ − β. RMSE denotes the root-mean-square
error. Parameter names as in equation 12. IITV stands for Instrumental Iterative Tobit VAR; Step-1 and Naive
methods as defined in Section 2.
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Table 14: Multivariate t-distribution (5 d.f.), 0.8 covariance (Variance-covariance estimation)

T = 100 T = 500 T = 1000

σ11 σ12 σ22 σ11 σ12 σ22 σ11 σ12 σ22

IITV Bias 0.038 -0.005 0.014 0.094 -0.003 0.011 0.100 0.001 0.016
RMSE 0.507 0.341 0.324 0.249 0.136 0.121 0.187 0.097 0.091

Step-1 Bias 0.141 -0.097 0.086 0.233 -0.103 0.073 0.241 -0.103 0.078
RMSE 0.522 0.323 0.312 0.335 0.169 0.144 0.293 0.140 0.122

Naive Bias 0.160 - 0.086 0.290 - 0.073 0.302 - 0.078
RMSE 0.750 - 0.312 0.438 - 0.144 0.367 - 0.122

Authors’ calculations. Bias denotes the bias of the estimator, built as β̂ − β. RMSE denotes the
root-mean-square error. Parameter names (σ11, σ12, σ22) are defined in Section 2. IITV stands for
Instrumental Iterative Tobit VAR; Step-1 and Naive methods as defined in Section 2.

Table 15: Multivariate t-distribution with 30 degrees of freedom, 0 Covariance Simulation

α1 α2 β11 β12 β21 β22 γ11 γ12 γ13 γ21 γ22 γ23

T = 100

IITV
Bias 0.040 0.017 -0.083 -0.017 -0.043 -0.020 0.011 -0.001 0.003 -0.002 -0.013 0.002
RMSE 0.339 0.178 0.173 0.109 0.154 0.094 0.127 0.080 0.115 0.072 0.127 0.072

Step-1
Bias -0.979 0.543 0.066 -0.063 -0.193 0.097 0.039 -0.021 0.012 -0.004 -0.021 0.018
RMSE 1.164 0.680 0.231 0.182 0.224 0.110 0.124 0.067 0.114 0.062 0.120 0.063

Naive
Bias -0.974 0.543 0.068 -0.063 -0.188 0.097 0.039 -0.021 0.012 -0.004 -0.020 0.018
RMSE 1.157 0.680 0.230 0.182 0.219 0.110 0.123 0.067 0.113 0.062 0.120 0.063

T = 500

IITV
Bias 0.028 0.011 -0.025 -0.003 -0.008 0.002 0.000 0.001 0.001 0.000 0.002 0.000
RMSE 0.098 0.059 0.060 0.041 0.051 0.035 0.043 0.029 0.036 0.023 0.039 0.023

Step-1
Bias -0.944 0.444 0.119 -0.053 -0.171 0.101 0.027 -0.014 0.008 0.001 -0.008 0.007
RMSE 0.968 0.467 0.148 0.088 0.177 0.104 0.055 0.031 0.042 0.022 0.043 0.023

Naive
Bias -0.940 0.444 0.119 -0.053 -0.168 0.101 0.026 -0.014 0.008 0.001 -0.007 0.007
RMSE 0.965 0.467 0.148 0.088 0.174 0.104 0.055 0.031 0.042 0.022 0.043 0.023

T = 1000

IITV
Bias 0.030 0.011 -0.020 -0.001 -0.005 0.003 -0.002 0.000 0.001 0.000 0.003 0.000
RMSE 0.074 0.042 0.042 0.028 0.035 0.024 0.031 0.021 0.026 0.016 0.029 0.017

Step-1
Bias -0.956 0.446 0.114 -0.047 -0.169 0.099 0.022 -0.015 0.001 0.001 0.007 0.003
RMSE 0.968 0.457 0.128 0.066 0.172 0.101 0.041 0.025 0.029 0.015 0.031 0.016

Naive
Bias -0.952 0.446 0.114 -0.047 -0.167 0.099 0.021 -0.015 0.001 0.001 0.007 0.003
RMSE 0.964 0.457 0.129 0.066 0.17 0.101 0.041 0.025 0.029 0.015 0.031 0.016

Authors’ calculations. Bias denotes the bias of the estimator, built as β̂ − β. RMSE denotes the root-mean-square
error. Parameter names as in equation 12. IITV stands for Instrumental Iterative Tobit VAR; Step-1 and Naive
methods as defined in Section 2.
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Table 16: Multivariate t-distribution (30 d.f.), 0 covariance (Variance-covariance estimation)

T = 100 T = 500 T = 1000

σ11 σ12 σ22 σ11 σ12 σ22 σ11 σ12 σ22

IITV Bias -0.047 -0.048 0.029 0.069 -0.043 0.031 0.078 -0.042 0.029
RMSE 0.368 0.216 0.178 0.164 0.090 0.075 0.132 0.070 0.057

Step-1 Bias 0.038 -0.097 0.063 0.156 -0.097 0.061 0.167 -0.096 0.058
RMSE 0.343 0.215 0.176 0.221 0.125 0.093 0.201 0.112 0.077

Naive Bias 0.030 - 0.063 0.154 - 0.061 0.164 - 0.058
RMSE 0.339 - 0.176 0.219 - 0.093 0.199 - 0.077

Authors’ calculations. Bias denotes the bias of the estimator, built as β̂ − β. RMSE denotes the
root-mean-square error. Parameter names (σ11, σ12, σ22) are defined in Section 2. IITV stands for
Instrumental Iterative Tobit VAR; Step-1 and Naive methods as defined in Section 2.

Table 17: Multivariate t-distribution with 30 degrees of freedom, 0.4 Covariance Simulation

α1 α2 β11 β12 β21 β22 γ11 γ12 γ13 γ21 γ22 γ23

T = 100

IITV
Bias 0.034 0.018 -0.069 -0.020 -0.035 -0.019 0.009 0.001 0.002 -0.001 -0.011 0.001
RMSE 0.322 0.175 0.144 0.093 0.129 0.080 0.121 0.082 0.113 0.073 0.124 0.074

Step-1
Bias -1.100 0.674 0.143 -0.124 -0.142 0.078 0.037 -0.019 0.017 -0.005 -0.017 0.018
RMSE 1.251 0.784 0.250 0.207 0.176 0.092 0.119 0.066 0.113 0.062 0.118 0.062

Naive
Bias -1.123 0.674 0.144 -0.124 -0.154 0.078 0.038 -0.019 0.016 -0.005 -0.019 0.018
RMSE 1.275 0.784 0.252 0.207 0.187 0.092 0.121 0.066 0.114 0.062 0.119 0.062

T = 500

IITV
Bias 0.027 0.011 -0.024 -0.003 -0.007 0.002 0.000 0.001 0.000 0.000 0.002 0.000
RMSE 0.095 0.058 0.051 0.035 0.043 0.030 0.042 0.029 0.036 0.023 0.038 0.023

Step-1
Bias -1.059 0.541 0.191 -0.104 -0.124 0.081 0.023 -0.012 0.011 0.001 -0.008 0.007
RMSE 1.078 0.559 0.208 0.124 0.131 0.084 0.053 0.029 0.042 0.021 0.043 0.023

Naive
Bias -1.080 0.541 0.196 -0.104 -0.131 0.081 0.024 -0.012 0.010 0.001 -0.008 0.007
RMSE 1.099 0.559 0.213 0.124 0.138 0.084 0.054 0.029 0.042 0.021 0.043 0.023

T = 1000

IITV
Bias 0.030 0.011 -0.020 -0.001 -0.006 0.003 -0.002 0.000 0.001 0.000 0.003 0.000
RMSE 0.073 0.042 0.037 0.024 0.030 0.021 0.031 0.021 0.025 0.016 0.028 0.017

Step-1
Bias -1.075 0.544 0.187 -0.097 -0.123 0.079 0.018 -0.014 0.002 0.001 0.009 0.003
RMSE 1.084 0.553 0.195 0.107 0.127 0.080 0.039 0.024 0.028 0.015 0.031 0.016

Naive
Bias -1.098 0.544 0.191 -0.097 -0.130 0.079 0.019 -0.014 0.002 0.001 0.008 0.003
RMSE 1.107 0.553 0.2 0.107 0.133 0.08 0.04 0.024 0.029 0.015 0.032 0.016

Authors’ calculations. Bias denotes the bias of the estimator, built as β̂ − β. RMSE denotes the root-mean-square
error. Parameter names as in equation 12. IITV stands for Instrumental Iterative Tobit VAR; Step-1 and Naive
methods as defined in Section 2.
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Table 18: Multivariate t-distribution (30 d.f.), 0.4 covariance (Variance-covariance estimation)

T = 100 T = 500 T = 1000

σ11 σ12 σ22 σ11 σ12 σ22 σ11 σ12 σ22

IITV Bias -0.036 -0.037 0.026 0.064 -0.038 0.029 0.072 -0.036 0.027
RMSE 0.369 0.219 0.178 0.161 0.088 0.074 0.127 0.068 0.056

Step-1 Bias 0.059 -0.106 0.076 0.173 -0.113 0.071 0.182 -0.113 0.069
RMSE 0.350 0.222 0.184 0.234 0.139 0.101 0.214 0.128 0.085

Naive Bias 0.053 - 0.076 0.179 - 0.071 0.190 - 0.069
RMSE 0.345 - 0.184 0.240 - 0.101 0.222 - 0.085

Authors’ calculations. Bias denotes the bias of the estimator, built as β̂ − β. RMSE denotes the
root-mean-square error. Parameter names (σ11, σ12, σ22) are defined in Section 2. IITV stands for
Instrumental Iterative Tobit VAR; Step-1 and Naive methods as defined in Section 2.

Table 19: Multivariate t-distribution with 30 degrees of freedom, 0.8 Covariance Simulation

α1 α2 β11 β12 β21 β22 γ11 γ12 γ13 γ21 γ22 γ23

T = 100

IITV
Bias 0.002 0.008 -0.049 -0.022 -0.032 -0.022 0.009 0.003 0.000 0.000 -0.011 -0.001
RMSE 0.290 0.164 0.112 0.081 0.107 0.074 0.114 0.085 0.103 0.076 0.113 0.075

Step-1
Bias -1.164 0.773 0.190 -0.172 -0.103 0.062 0.039 -0.017 0.021 -0.006 -0.015 0.018
RMSE 1.284 0.869 0.268 0.238 0.136 0.077 0.110 0.066 0.108 0.062 0.111 0.062

Naive
Bias -1.235 0.773 0.199 -0.172 -0.128 0.062 0.038 -0.017 0.019 -0.006 -0.020 0.018
RMSE 1.367 0.869 0.280 0.238 0.165 0.077 0.121 0.066 0.115 0.062 0.119 0.062

T = 500

IITV
Bias 0.015 0.006 -0.015 -0.003 -0.006 0.000 0.001 0.001 0.000 0.000 0.001 0.000
RMSE 0.080 0.054 0.039 0.029 0.035 0.026 0.037 0.028 0.031 0.023 0.033 0.023

Step-1
Bias -1.112 0.612 0.230 -0.143 -0.087 0.064 0.024 -0.011 0.014 0.001 -0.011 0.008
RMSE 1.127 0.628 0.242 0.158 0.094 0.067 0.049 0.029 0.040 0.021 0.041 0.023

Naive
Bias -1.181 0.612 0.252 -0.143 -0.102 0.064 0.022 -0.011 0.012 0.001 -0.010 0.008
RMSE 1.197 0.628 0.263 0.158 0.110 0.067 0.052 0.029 0.043 0.021 0.044 0.023

T = 1000

IITV
Bias 0.017 0.006 -0.012 -0.001 -0.004 0.001 -0.001 0.000 0.000 0.000 0.002 0.000
RMSE 0.059 0.038 0.028 0.020 0.024 0.018 0.027 0.020 0.022 0.016 0.024 0.017

Step-1
Bias -1.124 0.615 0.224 -0.135 -0.088 0.061 0.017 -0.013 0.002 0.002 0.009 0.003
RMSE 1.131 0.624 0.230 0.142 0.091 0.063 0.036 0.023 0.026 0.015 0.029 0.016

Naive
Bias -1.204 0.615 0.248 -0.135 -0.101 0.061 0.018 -0.013 0.002 0.002 0.008 0.003
RMSE 1.212 0.624 0.253 0.142 0.105 0.063 0.039 0.023 0.029 0.015 0.032 0.016

Authors’ calculations. Bias denotes the bias of the estimator, built as β̂ − β. RMSE denotes the root-mean-square
error. Parameter names as in equation 12. IITV stands for Instrumental Iterative Tobit VAR; Step-1 and Naive
methods as defined in Section 2.
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Table 20: Multivariate t-distribution (30 d.f.), 0.8 covariance (Variance-covariance estimation)

T = 100 T = 500 T = 1000

σ11 σ12 σ22 σ11 σ12 σ22 σ11 σ12 σ22

IITV Bias 0.004 -0.015 0.013 0.040 -0.018 0.015 0.042 -0.018 0.014
RMSE 0.377 0.231 0.177 0.136 0.084 0.070 0.102 0.061 0.050

Step-1 Bias 0.113 -0.109 0.086 0.190 -0.118 0.078 0.192 -0.122 0.076
RMSE 0.368 0.237 0.191 0.242 0.147 0.107 0.220 0.138 0.092

Naive Bias 0.075 - 0.086 0.200 - 0.078 0.212 - 0.076
RMSE 0.354 - 0.191 0.257 - 0.107 0.242 - 0.092

Authors’ calculations. Bias denotes the bias of the estimator, built as β̂ − β. RMSE denotes the
root-mean-square error. Parameter names (σ11, σ12, σ22) are defined in Section 2. IITV stands for
Instrumental Iterative Tobit VAR; Step-1 and Naive methods as defined in Section 2.

Table 21: Multivariate Normal Errors with One Exogenous Regressor

α1 α2 β11 β12 β21 β22 γ11 γ12 σ11 σ12 σ22

Cov = 0

IITV
Bias 0.036 0.015 -0.030 -0.006 -0.003 -0.002 -0.003 0.000 0.049 -0.037 0.024
RMSE 0.086 0.057 0.061 0.047 0.051 0.039 0.044 0.029 0.159 0.076 0.069

Step-1
Bias -0.885 0.456 0.295 -0.162 -0.060 0.032 0.028 -0.020 0.071 -0.062 0.038
RMSE 0.900 0.478 0.310 0.187 0.082 0.049 0.055 0.034 0.168 0.091 0.075

Naive
Bias -0.881 0.456 0.293 -0.162 -0.059 0.032 0.028 -0.020 0.069 - 0.038
RMSE 0.897 0.478 0.309 0.187 0.081 0.049 0.054 0.034 0.167 - 0.075

Cov = 0.4

IITV
Bias 0.035 0.014 -0.030 -0.007 -0.006 -0.001 -0.002 0.001 0.044 -0.037 0.022
RMSE 0.085 0.056 0.058 0.044 0.049 0.038 0.043 0.030 0.157 0.080 0.068

Step-1
Bias -0.901 0.484 0.316 -0.186 0.002 -0.005 0.030 -0.022 0.070 -0.073 0.038
RMSE 0.915 0.506 0.330 0.210 0.055 0.038 0.055 0.035 0.167 0.101 0.075

Naive
Bias -0.931 0.484 0.330 -0.186 0.002 -0.005 0.032 -0.022 0.078 - 0.038
RMSE 0.944 0.506 0.343 0.210 0.055 0.038 0.057 0.035 0.173 - 0.075

Cov = 0.8

IITV
Bias 0.022 0.010 -0.021 -0.007 -0.005 -0.001 -0.001 0.001 0.028 -0.022 0.012
RMSE 0.074 0.053 0.054 0.044 0.052 0.043 0.040 0.030 0.139 0.083 0.065

Step-1
Bias -0.805 0.447 0.254 -0.162 0.074 -0.050 0.038 -0.027 0.062 -0.073 0.034
RMSE 0.820 0.471 0.273 0.192 0.091 0.064 0.056 0.039 0.154 0.108 0.073

Naive
Bias -0.879 0.447 0.289 -0.162 0.083 -0.050 0.045 -0.027 0.078 - 0.034
RMSE 0.895 0.471 0.307 0.192 0.101 0.064 0.065 0.039 0.172 - 0.073

Authors’ calculations. Sample size=500. Bias denotes the bias of the estimator, built as β̂−β. RMSE denotes the root-mean-square
error. Parameter names as in equation 12. IITV stands for Instrumental Iterative Tobit VAR; Step-1 and Naive
methods as defined in Section 2.
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Table 22: Multivariate t-distribution (5 d.f.) with One Exogenous Regressor

α1 α2 β11 β12 β21 β22 γ11 γ12 σ11 σ12 σ22

Cov = 0

IITV
Bias -0.046 -0.019 -0.023 0.008 -0.007 0.000 0.018 0.001 0.242 -0.036 0.022
RMSE 0.103 0.059 0.057 0.045 0.055 0.040 0.052 0.029 0.432 0.113 0.122

Step-1
Bias -1.001 0.407 0.304 -0.138 -0.072 0.035 0.054 -0.021 0.251 -0.061 0.035
RMSE 1.020 0.427 0.318 0.165 0.095 0.051 0.076 0.035 0.431 0.122 0.126

Naive
Bias -1.002 0.407 0.303 -0.138 -0.072 0.035 0.054 -0.021 0.255 - 0.035
RMSE 1.021 0.427 0.317 0.165 0.094 0.051 0.077 0.035 0.444 - 0.126

Cov = 0.4

IITV
Bias -0.045 -0.018 -0.025 0.006 -0.012 0.000 0.018 0.001 0.229 -0.011 0.019
RMSE 0.099 0.056 0.055 0.043 0.054 0.038 0.052 0.029 0.410 0.121 0.121

Step-1
Bias -1.004 0.431 0.321 -0.160 -0.015 -0.001 0.056 -0.023 0.240 -0.051 0.035
RMSE 1.020 0.450 0.333 0.185 0.060 0.038 0.077 0.036 0.408 0.126 0.125

Naive
Bias -1.051 0.431 0.339 -0.160 -0.016 -0.001 0.060 -0.023 0.273 - 0.035
RMSE 1.069 0.450 0.351 0.185 0.063 0.038 0.081 0.036 0.459 - 0.125

Cov = 0.8

IITV
Bias -0.031 -0.013 -0.020 0.003 -0.012 0.000 0.013 0.001 0.154 0.019 0.009
RMSE 0.084 0.052 0.053 0.043 0.055 0.043 0.045 0.030 0.304 0.142 0.120

Step-1
Bias -0.848 0.395 0.246 -0.137 0.050 -0.044 0.056 -0.028 0.178 -0.035 0.030
RMSE 0.864 0.418 0.265 0.168 0.075 0.061 0.072 0.039 0.312 0.139 0.124

Naive
Bias -1.016 0.395 0.305 -0.137 0.059 -0.044 0.074 -0.028 0.288 - 0.030
RMSE 1.035 0.418 0.322 0.168 0.087 0.061 0.092 0.039 0.470 - 0.124

Authors’ calculations. Sample size=500. Bias denotes the bias of the estimator, built as β̂−β. RMSE denotes the root-mean-square
error. Parameter names as in equation 12. IITV stands for Instrumental Iterative Tobit VAR; Step-1 and Naive
methods as defined in Section 2.
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Table 23: Multivariate t-distribution (30 d.f.) with One Exogenous Regressor

α1 α2 β11 β12 β21 β22 γ11 γ12 σ11 σ12 σ22

Cov = 0

IITV
Bias 0.027 0.009 -0.029 -0.004 -0.004 0.000 -0.001 0.000 0.071 -0.036 0.026
RMSE 0.082 0.055 0.061 0.046 0.052 0.038 0.043 0.029 0.172 0.078 0.073

Step-1
Bias -0.901 0.449 0.297 -0.159 -0.062 0.033 0.030 -0.021 0.093 -0.061 0.039
RMSE 0.916 0.472 0.312 0.185 0.084 0.049 0.055 0.035 0.184 0.092 0.079

Naive
Bias -0.897 0.449 0.295 -0.159 -0.061 0.033 0.029 -0.021 0.091 - 0.039
RMSE 0.912 0.472 0.311 0.185 0.083 0.049 0.055 0.035 0.183 - 0.079

Cov = 0.4

IITV
Bias 0.026 0.009 -0.029 -0.005 -0.007 0.000 -0.001 0.000 0.066 -0.033 0.023
RMSE 0.080 0.054 0.058 0.044 0.050 0.037 0.043 0.029 0.170 0.081 0.072

Step-1
Bias -0.916 0.478 0.318 -0.183 0.000 -0.003 0.032 -0.023 0.092 -0.069 0.039
RMSE 0.930 0.500 0.332 0.208 0.055 0.037 0.056 0.036 0.184 0.100 0.079

Naive
Bias -0.948 0.478 0.333 -0.183 0.000 -0.003 0.035 -0.023 0.103 - 0.039
RMSE 0.961 0.500 0.346 0.208 0.056 0.037 0.058 0.036 0.192 - 0.079

Cov = 0.8

IITV
Bias 0.016 0.006 -0.021 -0.005 -0.007 0.000 0.000 0.000 0.044 -0.015 0.013
RMSE 0.072 0.052 0.053 0.044 0.053 0.043 0.039 0.030 0.147 0.084 0.069

Step-1
Bias -0.811 0.441 0.253 -0.160 0.071 -0.048 0.039 -0.028 0.079 -0.066 0.034
RMSE 0.827 0.466 0.273 0.190 0.089 0.063 0.057 0.039 0.166 0.106 0.077

Naive
Bias -0.896 0.441 0.292 -0.160 0.081 -0.048 0.047 -0.028 0.104 - 0.034
RMSE 0.912 0.466 0.310 0.190 0.100 0.063 0.066 0.039 0.192 - 0.077

Authors’ calculations. Sample size=500. Bias denotes the bias of the estimator, built as β̂−β. RMSE denotes the root-mean-square
error. Parameter names as in equation 12. IITV stands for Instrumental Iterative Tobit VAR; Step-1 and Naive
methods as defined in Section 2.

Appendix B Parameters Used in Simulation Exercises

The parameters used in the simulation exercises of Section 3 are reported in the following table:

Table 24: Specific Parameters Used in Simulation Exercises

α1 α2 β11 β12 β21 β22 γ11 γ12 γ13 γ21 γ22 γ23 σ11 σ22

0.10 0.10 0.50 -0.10 -0.20 0.50 0.30 -0.21 -0.35 -0.10 0.20 0.34 1 1

The βij coefficients were chosen so as to guarantee stability in the system of equations (VAR).

Recall that the error terms are drawn from multivariate normal distributions (Section 3) and
t-distributions (Appendix A). Also, the covariance (σ12 = σ21) varies between 0.0, 0.4 and 0.8 across
the different simulation exercises.
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Appendix C Description of the variables used in the estimation

Below we describe the data used in our empirical analysis. Note that, as in Romer and Romer
(2004), the frequencies of all variables were consolidated according to the meeting dates of the board
of directors of both the Central Bank of Turkey and the Central Bank of Colombia. Namely, we
computed the mean of each variable for periods between meetings (this is the case for all variables,
except FXI, for which we summed over all purchases). We find this consolidation useful, given that
our aim is to model policy decisions undertaken by monetary authorities. Hence, the meeting days
dictate when these decisions are undertaken.

Colombia:

Outcome variables in yt:

• ∆rt: Changes in the policy rate of the Central Bank of Colombia. It corresponds to the
minimum overnight lending interest rate, measured in percentage changes. (IRI )

• Int : Foreign Exchange Intervention conducted by either of the following mechanisms: purchases
of foreign currency in the spot market, or purchases of foreign exchange rate options for reserves
accumulation. Measured in USD billions. (FXI )

Exogenous variables in zt:

• Inf : Yearly inflation growth. Measured in percentage.

• Ipi : Industrial Production Index growth. Measured in log-differences.

• ERM : Exchange Rate Misalignment. Dummy variable switched on whenever the exchange
rate is greater than the average of seven in-house models of the Central Bank of Colombia.

• NetPos: Total Net credit/debit Position with respect to the financial system. Measured in
USD millions x 100.

• Dumi: Yearly dummies.

Turkey:

Outcome variables in yt:

• ∆rt: The policy rate corresponded to the central bank’s overnight borrowing rate between
February 20, 2002 and May 16, 2008 (due to the abundant liquidity in the market); to the
overnight lending rate between May 17, 2008 and May 20, 2010 (due to the liquidity shortage);
and to the one-week repo lending rate after May 21, 2010. Measured in percentage changes.

• Int : During auctions of announced purchases and sales, the Central Bank of Turkey optionally
exceeded the predetermined amount of FX purchases. Measured in USD millions.

Exogenous variables in zt:

• Inf : Inflation minus yearly target. Measured in percentage.

• Ipi : Industrial output growth. Measured in log-differences.

• ERM : Daily (1 business day) exchange rate returns.

• Dumi: Yearly dummies.
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