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Abstract

Sructural time series models, frequency domain analyss, the HP-filter, and the Blanchard-
Quah decompodtion, are used to observe, some peculiarities of the business cycle. Quch
properties are those related to the volatility of the temporary component and the duration of the
business cycle during both 1925-1994 and 1950-1994. For the longer period we find that
cycles between three and Six years seem to be the most important for the variability of output;
volatility is greater for GDP than for per capita GDP, except when the processes are linearly
detrended. For period 1950-1994, although the linear trend plus cycle model does not perform
very well, cycles of about eight years seem to be most important for the cycle. The results of the
Blanchard and Quah decomposition show that demand shocks have important explanatory
attributes for output fluctuations. However, supply shocks, are dominant in the behaviour of
output.

JEL cdlassification: C22; C29; E31; E32; EGO.

Keywords: cycles, structural time-series analysis, frequency-domain, Blanchard-Quah decomposition.

" This paper is based on chapter 2 of author Ph.D. thesis at  the University of Liverpool. | would like to thank to
my supervisor Professor David Ped for his expert guidance and to Professors Patrick Minford, Mark Taylor and
Kent Matthews and to Panos Michad for hepful discussions. The usual disclaims apply. Financial support from
Departamento Nacional de Planeacion is degply acknowledged. The opinions expressed here are those of the author
and not of the Banco de la Republica de Colombia.

" Author’s email: larangth@anrep.gov.co.



1. I ntroduction

The goal of this paper is to obtain some evidence on the nature of the temporary and permanent
component of Colombian output. Since, a priori, thereis no preferred method, we use a variety of techniquesin a
complementary way, in order to capture the peculiarities of the business cycle in Colombia, a small export
commodity-dependent economy. The properties in which we are interested, are those related to the volatility of the
temporary component and the duration of the business cycle between 1925 and 1994, with special emphasisin the
period after 1950. In a bi-variate environment, output growth is decompaosed to observe the quality of its reaction
when facing either a nominal or real shock.

Given the cyclical pattern suggested by the corrdogram of the series, the first method we examine is the
structural time series representation due to Harvey [1985, 1993] in which, as main feature, the parameters are time
varying and have a direct interpretation. Second, we consider the Hodrick-Prescott filter brought to the context of
output fluctuations by Kydland and Prescott [1982] and Prescott [1986] and widdy used in real business cycles
modeds when computing the stylized facts of the macroeconomic variables. Third, some basic spectral techniques
are employed to show the rdative importance of different frequencies in the explanation of the variance of output.
The results of the spectral analysis rate to the firgt difference, the linearly-detrended and the Hodrick-Prescott
filtered output. Finally, we depart from the univariate framework to consider a decomposition based on the vector
autoregressive method proposed by Blanchard and Quah [1989], motivated with a small-macro modd used to
investigate demand (money) shocks and supply (technology) shocks.

Analysis of the components of Colombia’s output has been previoudy undertaken using a different
approach. Clavijo [1992] and Cuddington and Urzua [1989], for example, use the Beveridge and Neson [1981]
decomposition to estimate the permanent and temporary components of GDP. However, given that this
decomposition is not unique, it is not used it in thiswork.

This paper consist of five sections, the first of which is this introduction. In the second section,
unobserved components models, are used to examine the structural components in the evolution of output, as well
as, the Hodrick and Prescott [1980] filter. In the third section, we use some basics of spectral analysis to find the
hidden cycles of output behaviour between 1925 and 1994. In this case we use some frequency domain concepts
with clear interpretation in structural time series models. In the fourth section, the temporary and permanent
components problem is considered in a bi-variate framework, following the method put forward by Blanchard and
Quah [1989]. Thefifth section presents some conclusions.

2. Decomposing Output Time Series

Suppose that, in a univariate framework, output can be decomposed into two components. trend
(permanent) and stationary (temporary) components. Thus, we may write:

Yi = M+ e @



where Y, IT,, and €, are the observed output, trend and stationary components, respectively. Different
assumptions have been used with respect to the statistical properties and the implied representations of the
components of Y; in (1). For example, to derive the properties of forecasts, Muth [1960] assumed a trend
component represented by arandom walk:

n = m, + u 2

wherethe white noise U, is uncorrelated with the temporary component €, , also assumed white noiseg; that is €, ~

i.d.(0,s ez), U ~i.d.(0,s 5), and E(€,, U,_;)=0, for all i. Accordingly, thefirst difference of Y, is stationary:

DYt = Uw t e - e (©))

In (3) there is only one observable redlisation DY, and two intrinsic indivisible or unobservable
reslisations, U, and €, , each with identified variances. The reason for this is that the variance of DY, S 2, is
S lf+2$e2 while the first lag autocovariance is equal to S ez , S0 that we can obtain S 5 ass?2,-2S ez . With this

information the components of (2) are recoverable (see Enders [1995]). This will be the case as long as the trend

component - IT, -isarandomwalk and U, and €,_; are(for all i) not correlated.

Beveridge and Nelson [1981] assumethat U, and €, are perfectly corrdated. They show that a sequence

with an ARIMA (p,1,q) representation contains a random walk stochastic trend and that such a sequence can be
decomposed into a stochastic trend plus a stationary component. To illustrate the Beveridge-Nelson decomposition
for ageneral ARIMA (p,1,0) modd we may write:

f(L)DY(= qo *+ g(L)a 4

where, f(L)=1-f , L-..-f |L” and q(L)=1-0, L-..-q, L. This approach assumes that U, and €, from (1) and (2),

respectively, arelinearly combinedinto @, in (4). Solving for DY, , we have:

DY:= f(L)'go + f(L)*a)a = a +y (L)a (5)
while the corresponding expression for Y, is:

Yi= Y + @ +y(La (6)

If lagged ;_, isrecursively substituted out, and it is assumed that Y, =0Oand &, =0, for j£ 0, we obtain:



t
Y. = at+ Qy (L)a )

j=1

which may bere-expressed as:

t-1
[o]
Yo = at+y(La+ay (La (8)
j=1
The first two terms on the right-hand side correspond to the permanent component (IT,, which is a

random walk with drift), while the third term identifies the stationary component. Expression (2) can be also

written as:

t-1
Y. =a+m,+y (L)I- Da+ay La; ©)

j=1

which provides the Beveridge-Nelson decomposition of Y, which is represented by a general ARIMA (p.1,9)%.
Note that in (9) the sequence @, involves the white noise sequences U, and €, in the case above, which, as a
result, appear to be perfectly correlated, since both vary with &, . However, there is no reason to believe a-priori

that innovations of the permanent and temporary components are perfectly corrdated. The correation between
them can lie between -1 and 1. Without such a knowledge, the decompasition of any sequence into a random walk
plus drift and a stationary component is not unique. Cuddington and Urzua [1989] use the computational method
suggested by Cuddington and Winters [1987] to perform the Beveridge-Née son decomposition of the logarithm of
Colombian GDP between 1930 and 1985. They conclude that under this decomposition, the cycles have shorter
duration and less amplitude than in the case of alinearly detrended sequence’.

Different assumptions about 1T, and €, other than Beveridge-Nelson's perfect correlation have been
introduced to model unobserved components . For example, to decompose the logarithm of real US GDP, Watson
[1986] assumes that the stationary component is AR(2) and the innovations U, and €, are uncorreated, which
seems to be more sensible. Harvey [1985, 1989] and Clark [1987], on the other hand, use the Kalman filter, within
a state space framework, to st up unobserved components models. These modds are called structural time series

modd's, which we consider next.

2.1. Structural Time SeriesModélling

* For a discussion of the Beveridge-Nelson decomposition, see also Sock and  Watson [1989], Harilton
[1994, p 504] and Enders[1995, p 186], among others.
8 See also Clavijo [1992] for a Beveridge-Nelson decomposition of Colombia’s outpui.



Under structural time series modelling the components have a direct interpretation, explanatory variables
are functions of time and the parameters are time varying [Harvey, 1993]. Within this context, the statistical
formulation defined by (1) and (2) is referred to as the local level (or signal plus noiss) modd from which we can

compute the signal-to-noise ratio S 5/3 ez . A local linear trend mode can be obtained by considering (1) together

with:
mo= ma+ b, + w (10a)

b, = b

t X (10b)

t-1

where U, and X, arewhite noise disturbances mutually uncorrelated with zero means and variances S 5 ands’,
respectively. The error U, affects the level of the stochastic trend, while X, affects the slope of it. Hence, when
S 5: s 2=0, IT, reduces to a deterministic linear trend. When S 5:0 but S 2 >0, the trend is an I(2) process,

which is rdlatively smooth. For annual economic time series, as we have here, the traditional formulation extends

(1) by introducing acycleterm, y , . Thuswe have:
Ye = M+ Y, + & (11)

where the stochastic linear trend, IT, , remains asin (10), and €, is white noise uncorrelated with X, and U, for

al t. A deterministic cycleis a sine-cosine wave with a given period. A stochastic cycle results when a deerministic
one is shocked with disturbances and the damping factor is added. The tatistical specification of the stochastic

cycley , takestheform:

. 6 COS W Sin wy . .
¢uu_ g ¢ el & )
& .u=r 3 . & . uté.u
& 0 g'sm W cos Waé/t-llfl g(tﬂ

while0 £ w £ p, is the frequency in radians, k; and k; are white noise uncorrelated disturbances with zero means
and variances S k2 (:Skzk )Y t appears by congtructioninorder toformy ,;andO£r £ 1isadamping factor of

the amplitude. The disturbance makes the cycle stochastic rather than deterministic, and the cycle will be stationary
ifr <1.
The stochastic process (12) becomes a first-order autoregressive process if wis 0 or p; this arises because

sn w is zero when w=0 or w=p. As a result, the equation generating Y " is redundant. The first equation of the

system described by (12) becomesy =ty , ,+K, whenw=00ory ,=-ry, ,+k, whenw=p.

" Stock and Watson [1989] present a survey of methods of decomposing macroeconomic variables and the
most relevant assumptions that such methods embody.



By using thelag operator, L, sothat X, 4= L X, , thecyclical component (12) can be written as:

-1

gl-r coswL -rsin wL g
&.u_ e 0 &
é *l:l_ é . l:l g(*g (13)
&t & r snwkL 1-r cos wL( tQ
e a
Thesolutionfor y , is:
1-r cosw.L) k+(r sinw.L) k;
y = Ko+ snw.) "
1-2r cosw.L + r-.L
and after substituting (10) and (14) in (11), thefollowing expression for Y, is obtained':
_ + - *
U, +(1 r cos wlL) k., +(r sn w.l) kt_1+ X, e, (19

L) [1- 2r cos w.L+r 2.7 1- L)

The mode in (15) is known as the trend plus cycle model**, which is estimated in the time domain
framework by using the Kalman Filter®. Consequently, the modes are set into state-space form, where the state

vectoris a, =(m ,bt Y oY t) To initiate the Kalman filter, the mean square errors of 17, and bt are set equal

to large but finite numbers, while the mean squared error matrix of (Y .,y t )" is set equa to the unconditional

covariance matrix of (Y .,y ; ). The likelihood function is maximised (numerically) with respect to S 2, s 2,
S XZ , Sk2 W, andr.

The measurement equation of the trend plus cycle mode required by the state space formulation can be

written as:
Y=[1 01 0] a,+e (16)

while the trangition matrix may be expressed as.

" ARIMA models can be interpreted as reduced forms of structural time series model. These involve several
disturbance terms which are combined in the ARIMA models which currently have only a single disturbance
term [Harvey, 1993]. An example of this occurs in the previous section when we move from Muth [1960] to
Beveridge and Nelson [1981] decompositions.

* An alternative model used by Harvey [1985] is the cyclical trend model. This model is specified by
carrying the cyclical component from (13) to (10a). Thus, we would have Y,=1, +€, where

M=n_+ b +y 1+ U,
%8 Appendix 1 to this work contains a sketch of the Kalman Filter and the state space form of the particular
problem here.
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The covariance matrix of the vector of disturbancesin (17) is a diagon
S k2 , S k2 }. Themodd is observable (identifiable) unlessr is zero or wis ether zero or p. The condition that S XZ

and S k2 be strictly positive is hecessary for stahility (see Harvey [1989]). Diagnostic checking tests can be carried

out by using the Ljung-Box Q-gatigtic, the H-gatigtic, and the F\’EZ, measure of goodness of fit. The Q-datigtic is

constructed as:

Q= T(T+2& (T -t)rt) @

t=1

where T isthe number of residuals (usually T-2) and r(t) is the t-th autocorreation in the residuals. Under the null
hypothesis, the Q-gatidtic followsa C 2 distribution with p-(n-1) degrees of freedom, where n is the number of
parameters. The H(m)-gtatidtic is a test for heteroscedagticity, which is constructed as.

;
é et
H(m) = =Lm (19)

m+k

2 2
a e
t=k+1

where m=T /3 or the nearest integer, k=T-T . The H(m)-statistic is the ratio of the sum of squares of the last m
residuals to the sum of squares of thefirst mresiduals. This statistic is centred around unity and should be treated as
having an F distribution with (m,m) degrees of freedom. A high (low) value indicates an increase (decrease) in the
variance over time [Koopman &.al, 1995].

Finally, the goodness of fit is carried out with the coefficient Réwhich compares the residual sum of
squares with the sum of squares of thefirst differenced observations about their mean. Hence, we may write:

RE = 1155 @)
a (DY:-DY)?

t=2



The sample autocorrdations of DGDP and DGDPPC between 1950-1994 and 1925-1994, shown in
figures 1.a-1.d, do not clearly suggest a white noise process for any series . Instead, because of the wave-shaped
behaviour, the corrdograms indicate a cyclical pattern: this is the most important criterion employed to decide
whether a structural time series decomposition should be used or not. Therefore, it alows us to carry out a
structural decomposition of output by using (15) [Harvey, 1985]. The corresponding estimates of the modd (15)
and the local linear trend moded -with no trigonometric cycle at all™'- appear in table 1. The results are not,
however, auspicious. Except, for the case of GDP (1950-1994), the estimates in the modd with no trigonometric
cycle (local linear trend) present a better goodness of fit ( F\’EZ, ) than the estimates of (15). In addition, the estimates
of Y are in all cases, close to unity, which indicates that either there is high persistence or the modd may be
inappropriate since the variable could be still nonstationary. In the case of GDP (1950-1994), the trend plus cycle
modd suggests a period near to eight years. The rest of the results suggest a deterministic cycle between 5 and 9
years, but the diagnostic statistics suggest that these models may not be very rdiable. Only in the case of GDP
(1950-94) the Q-dtatigtic is not significant and some evidence of heteroscedasticity is found in the residuas for the
longer sample period in both GDP and GDPPC.

Needless to say that we could not extract an obvious conclusion from the results of structural time seriesin

terms of business cycles since no neat deterministic cycle arises according to thesize of r and stochastic movements

are important only in the case of GDP (1950-1994), according to S k2 . Among the modes in table 1, the linear
trend plus cycle modd for GDP (1950-1994) presents some attractions in F\’EZ, the standard error, and the

estimated variances of the residuals, specially S .

2.2. TheHodrick-Prescott Decompostion

There has been increasing use of the Hodrick-Prescott™ (HP) filter for trend removal of the aggregate
economic series to the study of stylized factsin the context of business cycles. The key feature of the HP filter isin
defining the trend by the computational procedure used to fit the smooth sequence such that its key business cycles
facts are kept. Explicitly, the criteria used by Kydland and Prescott [1990] to sdect the trend component -that
results from the HP-filter arethat: i) it is that curve which would be drawn by hand to fit the sequence; ii) it has to
result from a linear transformation of the sequence which has to be standard for all the sequences; iii) it has to be

™" The data sources are: Easterly [1994] for 1925 - 1929; Cuddington and Urzia [1989] for 1930-1949;
Principales Indicadores Econdmicos 1923 - 1992. Banco de la Republica for 1950-1992; and Revista Banco
de la Republica different issues for 1993 1994.

™ The model set in this way (with no sinusoidal cycle) is similar to that used by Clark [1987] to study the
behaviour of US industrial production and gross national product using quarterly data. The cyclical
component in Clark [ 1987] is assumed to be an AR(q) process.

** The method is also called Whittaker-Henderson Type A method (see Hodrick and Prescott, [1980] and
Prescott [1986]). Applications of the filter are found throughout, e.g. Kydland and Prescott [ 1990], Kim,
Buckle and Hall [ 1995].



simple to compute, free of judgements and reproducible for all the sequences; and iv) small changes in the sample
size should not produce considerable changes in the values of the components.

The HP filter is a low-frequencies suppressor which results from minimizing the squared deviations of a
trend component, t , , from a sequence, { Y, }, subject to the constraint that the sum of the squared first difference of
the growth rate should not betoo large. That is:

-
min a (Y-t 21)
{t t}Ll t=1

subject to
'S )
a. [(tt+l'tt)'(tt'tt.1)] £m (22)
t=2

where Y; isthelogarithm of the (raw) variable. In general, a smooth trend results when the value of m is small.
The growth rate of the trend component [(t, - t,_,), for t=1,..T] is assumed to vary smoothly over time

whilethe deviations from t , are assumed to have zero (or near to zero) mean. Theterm (Y;-t,),(aT 1 vector that

we labdl below 'y ,) can be interpreted as the cyclical component, whiletheterm [(t,,, - T, )-(t, - T, ;)] canbe

interpreted as the change in the growth rate of the trend component®*®. The operability of the HP is straightforward.
In matrix form, the problem stated in (21)-(22) can berewritenasmin{t , } y 'y +I (K, )'K, , wherel isthe

Lagrange multiplier, K isa T' T matrix and t isa T 1 vector. The product K, (=[(t ;- t,)-(t, - t,_;)D)is

written as:
g-2 10 0..000y &,u
é ua & u
© 1-210..0 0 0 2.4
Kt =@ a é a (23)
é ua é a
e ............................. l;| élzl
€0 0 000...1-2 14 &-H

The solution to the minimization problemiis found for t , = A lYt , where A=1+| KK and | is the identity

matrix (see Danthine and Girardin [1989]). The Lagrange multiplier | rdates the variance of the cyclical
component to the variance of the (second difference of) trend component. In other words, the parameter | signals
the importance attributed to the fit of {1, } with respect to the smoothness of {t ,}. When | is high the HP filter
operates as alinear time trend and persistence increases. This occurs sincel  penalizes the variations in the growth

rate of the trend component {t , }. Put another way, when we choose a high | we are choosing a smooth t, from

(21)-(22); when we choose| tobezero, Y;=t, andthecycleis zerofor all t.

%% These terms are interpreted asthe fit of {t , } and the smoothness of {t , }, respectively.



The choice of the smoothing parameter () is the main drawback of the HP filter. If the cyclical
component and the change in the growth rate of the trend component were identically and independent normally

distributed with mean zero and variances Sf and 822 respectively, the problem: min{t .} S 1'2 (Y - tt)2 S éz

[(t ey~ tO-(t, - t, ;)] hasthe same solution as thet of (21)-(22). Thus, v/1 =(,/S, /4/S, ). However,

these components are not normally distributed. Hence, Hodrick and Prescott [1980] picked a value of mso that the
Lagrange multiplier of the constraint is 1,600 by arguing that a 5% of the deviation from the trend per quarter is
moderately large as is a one-eighth of one percent change in the growth rate in a quarter. For annual data, the
parameter | issetto400 .

The pands of figure 2 show the trend obtained by applying the HP procedure to GDP and GDPPC, along
with the trend in the limiting case (| ® large or n® 0 ): the linear trend. The pands in figure 3 show the HP
detrended GDP and per capita GDP and contrast them with linearly and differenced detrended series. Regardless
that fluctuations are less pronounced in the case of the HP filtered series, these follow the linearly detrended series.
However, Singleton [1988] shows some evidence according to which HP filtering has similar effects to differencing
the data since both detrending methods give essentialy zero weight to the very low frequencies while amplifying
the power spectrum at high frequencies' . Nevertheless, we could add that such a similarity depends on the values
sdected for the Lagrange multiplier | : the smaller the value of the Lagrange multiplier the higher the similarity
between HP and first-difference filtering™. According to Singleton [1988], an implication of filtering the data is
that stylized facts, used to characterize business cycles, could be distorted. King and Rebeo [1993] reinforce this
view by pointing out that the HP filter could remove important time series components thet have traditionally been
regarded as representing business cycle phenomena. However, in the univarite context of this work, it is not
appealing to verify this hypothesis, since King and Rebdo refer basically to cross-corrdations with other variables
typically used in business cycles analysis. In the case of GDP and GDPPC of Colombia, the standard deviations for
the HP filtered series are 2.62% and 2.77%, respectively. The same statistics for the linearly detrended and
differenced series are 5.40% and 4.12%; and 2.41% and 2.52%, respectively, for the period 1925-1994. These
estimates suggest that some caution should be taken when considering the volatility of output since GDPPC
appears more volatile than GDP but only when the processes arelinearly detrended.

Apart from the intuitiveness of the definition of trend, the HP filter has the ability to render stationarity
even to series integrated up to the fourth order [ Danthine and Donaldson, 1993]. However, King and Rebd o [1993]

"~ The preceding arguments about | or mare set by Harvey and Jaeger [1993] in terms of the structural
time series representation of the previous section. According to them, the HP filtering is equivalent to

imposing the restrictions S S:O, Yy =0, and sj/sle in models (10) and (11). Thus, the cycle is

explained by €, b,, and X, .

"™ Precott [1986] interprets the HP decomposition as a high pass linear filter which resolves in a better way,
than conventional spectral filters, the problem of the end of the sample produced by the sharp cut-off (i.e. no
tapering isrequired). See next section.

¥ Thisresult is not shown.



demonstrated that under some conditions the HP filter can be an optimal filter for a second order integrated
process. Cogley and Nason [1995a] showed that filtering the data could introduce, spurioudly, behaviour of business
cycles even to random walks. On the other hand, Harvey and Jaeger [1993] have criticised the HP procedure since
only irregulars (€, , in (11)) are reported as cycles under this filter. Accordingly, a modd such as that described by

(11) and (10), which also contains y , should be considered. However, in the previous section, we found no strong
support for this modd during 1925-1994 and, in the case of GDP, only irregular fluctuations of the trend
component (S 5 > 0) were detected by that procedure. Therefore, the cyclical component computed through the HP

filtering could be more valid.

3. Some Frequency-Domain Peculiarities of Output

The frequency-domain approach is a technique both complementary and competitive to the time-domain
approach used to analyse the behaviour of the variables. Spectral methods provide a natural mathematical approach
to the mixture of regularity and nonregularity exhibited by business cycles, in particular to the lack of periodicity of
fluctuations [Granger and Hatanaka, 1964]. It is wel known that the results of a spectral analysis will be much
more reliable the larger the sample size mainly when the analysis in focused on low-frequency variations. Here we
shall use a sample of seventy data points (1925-1994) which is not as large as frequency-domain analysts demand,
although it surpasses Granger and Hatanaka's recommendation of using data of at least seven times the length of
the largest cycle to study when the variable has no trend in mean [Granger and Hatanaka, 1964, p. 17-18].
Regardless that our interest hereisin cycles of less than seven years, (since we attribute cycles of greater duration to
growth phenomena rather than to business cycles), we shall use the technique to find the more relevant cyclesinthe
behaviour of Colombia's output. In other words, we shall use this approach to trace the 'hidden periodicities of the
sequence of output fluctuationsin the last seventy years.

Theinformation we arelooking for is contained in the (power) spectra density function®™3, Sw), whichin
strict sense shows the variance of 'Y;, decomposed into variance attributed to different frequencies (Englund, et.al
[1992]). The spectral density function is estimated through the periodogram, a diagram which show pesks at
points corresponding to the hidden periods of a process. For the mean-subtracted sequence, (Y, - V) , the
periodogram or sample spectral dengty function, can be computed as:

2

Y -Y)e™ (24)

Qo

@)=
| nYe-Y (q) - 2pn

1

—
1

5558 The power spectra density function is the Fourier transform of the autocovariance function, R(k), of the
sequence Y;. See Priestley [1981, p. 211] for a formal proof. Sargent [1979, p. 233] deals with this

equivalence. The standardised version of the power spectra density function is called the power spectrum.
Hence, the area under it isequal to one (see Harvey [1993, p. 167]).



wherenis the sample and q is a vector of parameters. Note that (24) involves n sample autocovariances
The periodogram is asymptotically unbiased; however, in practice we obtain a biased periodogram since
the sample size is finite. In addition, it is not a consistent estimate of the spectral density function since i) the

*****

variance of | , and ii) the covariance between

nYt-Y

estimates at different but adjacent frequencies (W, , W,), i.e Cov [l . ©(@;).1 . ;(d,)], decreases as n

becomeslarge (n® ¥), hencethe probability of deciding in favour of a spurious cycleis higher. Thus, a smoothing

mechanism is implemented to reduce such erratic and wild fluctuations of InYt_V(q), and to generate a

consistent estimator of the spectrum Sw). Such an estimator, s’ (W), may bewritten as:

1 g
Sw) = » a k(s Ry cossw (25)

where kn (9) is thelag window generator and F\’(s) represents the autocovariance function. The function kn (9is

a sequence of "weights' gradually decreasing, originated as a function of M (< n), which is the window parameter
or truncation point ™", However, the smoothing procedure introduces some additional bias which has to be traded

off with the gain in consistency. Equivalently, S, (w), can bewritten as™*:

SW) = &, lhy-y@Wi(w-g)dg (26)

The spectral window, W, (w-q), is the Fourier transform of K(s) which takes its maximum when g = 0.

Givenw, S:( (w) can beinterpreted as a weighted average of periodogram-type estimates at frequencies centred on

w [Granger and Newbold, 1986]. Its diagram shows the decomposition of the series's variance into variances
attributed to different frequencies of such series. A band of frequencies is considered important if it contributes a
high proportion to the variance of the series. The estimates of the spectral density can exhibit bias because of the
presence of one or more large peaks (Sde lobes or window leakage) in the underlying spectral density (Granger
[1966]). This fact could be explained by the high correlation between neighbour values of the datain levels, mainly
when the frequency of the data tends to be higher. However, such bias in spectral estimates can be reduced by

*****

The sample spectral density function is not an ergodic process.
" There is no agreement about which criterion to use to select the truncation point, s: it can be the same
(lag) at which there is a cut off in the autocorrelation function or it can be a fixed proportion of n or a

window closing process. Different expressions for kn () have been proposed. Here we use the Bartlett
window [k (s)=1-|s|/M if M3[s], or Oif |s>M]. For a complete set of windows used see Priestley [1981].

¥ 1n practice, however, the expansion of any process is done by means of the "fast Fourier transform"
algorithm that computes the Fourier transforms and permits computation of the periodogram| . (w) and

the spectrum s’ (w) directly from the data and does not need to compute (M-1) autocovariances asin (25),
(Priestley [1981,p. 575]).



prewhitening the data through a mechanism called a taper®%® (fader or data window). A second source of bias
depends on the bandwith (the interval or distance between the frequencies) adopted in the estimation of the
spectrum. The possibility of a biased estimator is reduced when the bandwith is chosen to be sufficiently small. The

result is a higher resolution of the estimate.

3.1. DataPreparation and Results

We regard the natural logarithm of the sequences of GDP and GDPPC as nonstationary. For the sake of
comparison, we assume that stationarity could be reached by detrending the sequences in the two usual ways: by
differencing the data set, and by removing a linear trend. In thefirst case, the mean is subtracted after differencing
the series. Hodrick-Prescott (HP) filtered series (with | =400) are also included into the analysis. Thus, the
frequency-domain techniques are used on six time series, each zero-mean. The series are transformed into complex
numbers, we use a trapezoidal taper to smooth the cut off produced by the end of the series with the aim of
reducing the bias produced by the window leakage; the series, without trend, are also padded (added with zeros)
from 69 (or 70) up to 128 (the closest power-of-two number) to apply the fast Fourier transform algorithm more
efficiently; finally, the tent-shaped Bartlett window of size nine (M=9), with a truncation point in the lag window of
four (s=4), has been implemented to increase the consistency of the estimated spectrum™ . Frequency is
converted from therank [0,p] to the rank [0,34] expressad into years, so as to have a frequency up to 34 cycles of a
period of two years each during the sample period.

According to the results, the estimated power spectrum of GDP and GDPPC under the three detrending
procedures do not represent a random walk generating process (figures 4.a-4.¢). If this was the case, thelevd of the
log spectrum would be about -3,5 [»In(1/34)] . The estimated mass spectrum for thelinear detrended seriesis nearer
to this value than the mass spectrum of differenced and HP-filtered sequences.

The upper pand of figure 4.3, corresponding to DGDP, suggests a higher importance for hidden cycles
between 3 and 6 years (i.e. 23 and 12 on the horizontal axis). The mass spectrum is hump-shaped in both directions
taking cycles about seven years as benchmark (10 on the horizontal axis). However, the fact that lower frequencies
have less importance than higher frequencies is till true. When GDP is linearly detrended (upper pand of figure
4.b) the estimated spectra has Granger's "typical spectral shape' which is associated with the problem of |eakage
pointed out above (Granger, [1966]). A high correation between adjacent values of the variable in levels could
explain such a shape. Finadly, the estimated mass spectrum corresponding to the HP filtered GDP (upper pand of

$55%5 Consider a factor by applied to the mean-subtracted sequence (Y, - Y), as b, (Y, - Y), with b, =1if

t=1,..n and b=0 otherwise. The trapezoidal taper operatesast/15,if LE£t £ 15; 1if 16 £t £ 55; and t/15 if
56 £t £ 70. Koopmans [ 1974, p. 301], reportsin addition, a sine-type tapering procedure and a method for
constructing tapers.

****** A window size equal to the square root of the sample size is recommended. The explicit form lag
window operator (the Bartlett window) that we assume is given by 1-§M, with s=0,..4, and M=9.



figure 4.c) pesks at very low frequencies: regardless that hidden cycles between three and six years are till
important, cycles of a greater period (say, about 8 years) seem dominant.

The high concentration of the power spectrum of sequences in cycles between three and six years seems to
be a feature of GDPPC as wdl. In other words, the proportion of the variance attributed to movements of output
about 3-6 years is high with respect to other components' ", This result contrasts with the first signal about the
period given by the structural time series decomposition of section 2.2.1 above. Recall that the period of the cycle
found there was between five and nine years. However, given the diagnostic statistics, the results of these modes

should be taken with some caution.

4, Permanent and Temporary Components of Aggregate GDP: A

Bivarite View

In the study of permanent and temporary components, the link between changes in long run trends and
shorter run departures from the growth path or trend rate of change™**** has been attributed a specia role
However, as we saw in section 2, in spite of the degree of corrdation between the irregular components of the
underlying stationary and nonstationary parts of the sequence, an identification problem arises sincethis correlation
cannot be estimated directly from a single sequence. Assumptions about such correation are that permanent and
temporary innovations are perfectly correated as in Beveridge and Nelson [1981] or not corrdated at all asin the
unobserved components modds posed by Nelson and Plosser [1982], Harvey [1985], Watson [1986], and Clark
[1987], among others. As an aternative to that identification problem, multivariate frameworks have been used in
order to find a feasible separation of output's components. This view has been adopted, among others, by Sims
[1980], Blanchard and Quah [1989] and King, Plosser, Stock and Watson [1991].

The information we have gathered so far about the dtatistical nature of Colombia's output, shows
sequences characterized by cycles of about 5-9 years under a structural view; and important fluctuations of about 3-
6 years on GDP and GDPPC from the frequency domain results. However, we cannot say whether the output's
behaviour corresponds to a set of responses due to shocks originated ether in the demand side or in the supply one
or whether the origin of the shock is immaterial to qualify the permanent and temporary components of output. To
find answers to such questions in this section we use a bi-variate framework to build a small macromodd where
prices and output are endogenous. We use the Blanchard and Quah [1989] decomposition which identifies demand
shocks as those having short run (temporary) effects on output but not otherwise. Conversdy, supply shocks
produce long run (permanent) effects on output. This perception is set as the identifying redtriction on the
parameters of a VAR system involving two endogenous (covariance-stationary) variables: DGDP and the rate of
unemployment; as in the case analysed by Blanchard and Quah [1989] supply and demand shocks are uncorrelated

T A common spectral analysis definition of business cycles is that these are frequencies between six and
thirty-two quarters. That is between one year and a half and 8 years. This definition derives from the
duration of the cyclesisolated by NBER [ King and Watson, 1996] .



and only the former is allowed to have a long run effect on output™*s®, In contrast to the result of Nelson and
Plosser [1982], who found in the supply (technological) shocks the driver of the US economy, Blanchard and Quah
end up with DGDP mainly driven by demand shocks in the case of that economy.

4.1. TheBlanchard and Quah Decomposition™
The Blanchard and Quah (BQ) method starts with a bi-variate system as.

Yo = a B(e(t-)) (27

¥
o]
i=0

where Y isa 2 1 vector of endogenous covariance-stationary variables (growth of output and inflation rate, i.e
Y,'=[DGDP P]), €, isa 2 1 vector of uncorrelated disturbances (demand, etd , and supply, ets Jdisturbances,
e '=[ etd e’]), and B(j) is2 2 matrix of parameters so that:

_ () bu()u
&,(J) byl

where b, (j) and b, (j) show the effect of € and €] on DGDP j periods later while &*_, by, (j) shows the

B(j)

(28)

total effect of etd on DGDP after k periods. Consequently, the matrix B(0) corresponds to the contemporaneous
effect of disturbanceson Y, .

Because of the absence of corrdation between disturbances, after normalization, we can write

Var(€,)=1, . Therestriction about the effects of demand shocks on output implies:

0=3 bn(j) 29)

j=0

which closes the BQ specification. To explain the operability of the BQ decomposition consider a VAR system
which involves the two endogenous variables (DGDP and P):

A(j)Yt-j + e (30)

o

Y. =

j=1

where A()) isa2 2 matrix of parametersand € isa2' 1 vector of innovations. The moving average representation

of (30) can bewritten as.

¥ Brunner and Meltzer [1986] , use this equivalence.
$358%8 The scheme of Blanchard and Quah [1989] is essentially the same as King et al. [1991] . However, the latter
ismore general since it consdersatri-variate sysemingtead of a bi-variate one.

*******

See also Quah [1988] for more theoretical issues about the decomposition.



vi = I-AAQOLT & = & CO)ett-) @

j=1 i=0
where C(0)=1. The dements of C(j) will be:

_d-a,(i) -3’
& - ay() 1- a()l

The variance-covariance matrix of innovations is defined as Var(€ )=L. Given (27) and (31), we can

C(i)

(32)

write

B(O)e(t) = e(t) (33)
hence,
B(G) = C() ~ B(0) (34)
Now, to identify B(0), notefirst, that:
E(eg’) = Var(e) = L = B(0)" B¢(0) (35)

which imposes three restrictions on the components of B(0); and, second, allowing for (29), we have:

0=[1- § a,(j)]” by(0)+§ a,(j)” b,(0) (36)

j=0 i=0
which is a fourth identifying restriction. Thet is, to identify B(0), Blanchard and Quah have imposed : i)
orthogonality of the dements of & ; ii) unit variance of the elements of € ; and, iii) no long-run effect on output
growth of one of the dements of € . Once B(0) is identified, the original disturbances (demand and supply shocks)

are identified as wdl. To solve the 4" 4 system that contains the restrictions, we adopted the positive root when
dealing with the quadratic expression which results in the solving process since the results seem to be more

sensible.

4.2. Motivation and Results

To moativate the BQ decomposition of GDP between permanent and temporary components, consider a
mode closeto that originally used by Blanchard and Quah [1989]. The modd, in logarithms, is:

Y =M,- R @)

Y =a (R- E R+, @)



i tel (39)
M, =M, , +¢e (40)
where Ytd is aggregate demand, Yts is aggregate supply, M, is money, P, is priceleve, | . is technology,

etd and ets are the demand and supply original disturbances, E is the expectations operator and E Ny P . is the

expectation formed at the end of t-1 about the price levd in period t. Equation (37) represents the (quantity theory
type) aggregate demand in terms of real balances; (38) is aggregate supply explained by differences between actual
and expected leve of prices " and shifted by technology; equation (39) represents the motion of technology;
and, finaly, eguation (40) shows the behaviour of money supply. By construction, the mode associates technology
shocks to aggregate supply and money shocks to aggregate demand.

After some algebra the solution of the modd can bewritten in terms of the original disturbances as.

a
DY.= ——(ef- ey) + ef- ef)+ ef 41
t 1+a(t tl) 1+a(t tl) t ( )
1 a
DP.= ——(ef-ael)- ——(ef- ef1) - ef 42
t 1+a(t tl) 1+a(t tl) t ( )

which matches the system described in (27). However, it still cannot dudethe point of Lippi and Reichlin[1993] in
the sense that an infinite order system, as in equation (27), is being represented by afirst order system of equations
(41) and (42). But, this solution incorporates more lags in the disturbances, of the equation other than of output,
than the mode used by Blanchard and Quah [1989]*#####*, The restrictions imply that technology shocks have both
short and long run effects on output and inflation; they also imply that money shocks have short and long run
effects on inflation but only short run effects on output. The BQ decomposition is implemented by using the first
difference of the logarithm of GDP and the rate of inflation, computed as the log-difference of Consumer Price
Index (CP) in the period 1950-1994 (figure 5)%%%%%. Following Gaviria and Posada [1994] we have sdected an
order-two VAR system to match the equation described by (30) .

Figures 6.a to 7.b. show the impulse response and the accumulated response functions after a shock
received by the aggregates. Accordingly, the short and medium run dynamic motion of GDP growth in Colombialis
explained by both technology shocks or supply shocks and demand shocks. In the very long run, however, the
motion of the sequence of aggregate GDP is explained only by technological innovations. In figure 6.a. we observe
that a money supply shock of one standard deviation has effects on GDP that last for about 10 years while the
effects on prices remain for about 20 years. Theinitia effect on inflation is about 4.0% whileit is only about 0.8%

M This specification might be associated with both Lucas's model of price misperceptions and nominal
rigidity such as Fisher's long-term labour contracts model all signed at the same moment.

Y gpe glso Blanchard y Quah [1993] and Quah [1995] .

8555538 The Dickey-Fuller test does not fail to reject the null that these variables are I(1).

In the rank given by SBC criteria this order is second top. The conclusions are not affected by
working with this order instead of with one.



on DGDP. However, there are two clear differencesin the reactions of the variables: whereas the effect on inflation
has the same sign as the demand shock, the effect on DGDP is paositive up to the third period after the shock but
negative from there on. The message is that monetary shocks have a positive effect on DGDP in the short run but
not in the medium and long-run. In figure 6.b. the result is different since positive technological shocks have
unambiguous proportional effects on DGDP but negative in the case of inflation: a positive supply shock of one
standard deviation increases DGDP by 1.0% and reduces inflation by about 4.5%. From these initia points, the
effects sart to die out, a process that lasts for 10-15 years.

The accumulated response functions of GDP (figure 7.a.) show that the effect of supply shocks on GDP is
permanent as expected from the BQ decomposition, whereas the effect of demand shocks is only temporary. In the
first case, thetrend of GDP shifts by about 2.5% in the long run. Inflation (figure 7.b.) increases permanently with
demand shocks (by about 20%) in the long run and reduces permanently with productivity shocks (by about 10%).
Thefact that the effects of any demand innovation take such along time to disappear contributes to the persistence
of GDP. However, the effects of supply shocks dominate the variability of GDP, while demand shocks are the most
important explanation in the variability of inflation mainly in the long run. This assertion is supported by the
variance decomposition (table 2).

5. Conclusons

Given the results, the final considerations about this work can be split into two sets depending on the
period to which we are referring. First for period 1925-1994, the frequency-domain analysis suggests that cycles
between three and six years make a high contribution to the formation of variability. That is, cycles between 3 and 6
years are important in the formation of the power spectrum of GDP. With respect to the volatility of GDP and
GDPPC, the standard deviations for the HP filtered series are 2.62% and 2.77%, respectively. The same dtatistics
for the linearly detrended and differenced series are: 5.40% and 4.12%; and 2.41% and 2.52%, respectively. These
results suggest some caution before considering the volatility of output since GDPPC appears more volatile than
GDP but only when the processes are linearly detrended. Structural time series decomposition does not suggest the
existence of any other cycle during this period. Conversdy, the local linear trend seems to be the most appropriate
modd for the series.

Second, for period 1950 - 1994, given that no neat deterministic cycle arises, the cyclical component of
output analysed through the linear trend plus cycle model, does not seem to be a characteristic of the time series
used here since, except for GDP, when the modd presents some interesting results: only cycles of about eight years
areimportant in the behaviour of output. Inthe sameway, stochastic movements are important only in the case of
GDP. Finally, the results of the Blanchard and Quah decomposition show that demand shocks have important
explanatory attributes for output fluctuations. However, supply shocks are dominant in the behaviour of output. In
particular, nominal shocks of one standard deviation have effects on GDP that last for about 10 years while the



effects on prices doubles it. Theinitial effect on inflation is about 4.0% whileit is only about 0.8% on DGDP. The
messageis that money shocks have a positive effect on DGDP in the short run but not in the medium and long-run.
Positive technological shocks, on the other hand, have unambiguous proportional effects on DGDP but negative in
the case of inflation: a positive supply shock of one standard deviation increases DGDP by 1.0% and reduces
inflation by about 4.5%. From these initial points, the effects start to die out, a process that lasts for 10-15 years.
The accumulated responses of GDP show that the effect of supply shocks is permanent, whereas the effect of
demand shocks is only temporary. Inthefirst case, the trend of GDP shifts by about 2.5% in thelong run. Inflation
increases permanently with demand shocks (by about 20%) in the long run and reduces permanently with
productivity shocks (by about 10%). The effects of supply shocks dominate the variability of GDP, while demand
shocks are the most important explanation in the variability of inflation.



Table 1. Sructural Decomposition of Output
Maximum Likelihood Estimates of Parameters

Satigic GDP GDPPC GDP GDPPC
1950-1994 1950-1994 1925-1994 1925-1994
No Cycle Cycle No Cycle Cycle No Cycle Cycle No Cycle Cycle
R’ 0.072 0.261 0.017 0.0002 0.011 0.011 0.11 0.025
H 0.69 (14) 049 (14) 109 (14 1.10 (14) 0.23" 0.23" 0.22” 0.22”
(m) (22) (22) (22) (22)
Q 18.95"" 11.45 9.61" 21.02""" 14.15™" 15.35" 9.50" 10.79
(p.d) (8.3) (11,6) (8.3) (11,6) (8.3) (11,6) (8.3) (11,6)
Sandard 0.017 0.014 0.018 0.018 0.023 0.023 0.024 0.024
Error
LogL 174.1 181.2 169.7 169.7 250.9 250.9 2485 249.0
2p/w (inyears) - 7.95 - 4.9 - 5.00 - 9.3
w - 0.79 - 1.27 - 1.25 - 0.67
r - 0.96 - 0.95 - 0.90 - 0.92
sé (1109 0.007 0. 3.4 5.8 5.8 5.8 6.2 6.1
s (107 - 0.017 - 0. - 0. - 0.31
s (1 10°) 114 0.022 0. 0. 0. 0. 0. 0.
s&( 10°) 0.001 0.03 0. 0. 0. 0. 0. 0.

NOTE: Two asterisks mean significant at 5% level of significance, and three asterisks mean significant at the 1% level. “ Cyde’

corresponds to equation (15) which in the text is called the trend plus cycle model while “ No Cycle”

is the same modd without

the sinusoidal cycle component which in the text is called the local linear trend model: equations (1) and (10). Q(p,d) is the value

of the statistic of Ljung-Box, where p isthe number of lagsin (18) and d identifies degrees of freedom (d=p-(n-1)).



Table 2. Blanchard-Quah Decomposition

Variance Decompostions

GDP Growth Inflation

Periods Ahead Demand Supply Demand Supply
Shock Shock Shock Shock

1 28,7 71,2 47,8 52,2

2 275 72,5 54,8 45,2

3 26,3 73,7 58,1 41,9

5 26,6 73,4 61,7 38,3

10 27,6 72,3 63,6 36,4

20 27,9 72,1 63,9 36,1

30 27,9 72,1 63,9 36,1

Figure 1. Correlogram of GDP DGDP
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Figure 4.b Spectrum of Linearly Detrended GDP and GDPPC. 1925 - 1994



Figure 4.c. Spectrum of HP Filtered GDP and GDPPC. 1925 - 1994
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Appendix 1
The State Space Form and the Kalman Filter T

The observable sequence { Y;} can be represented by the measurement equation: Y, =za, + €,
where Z isa 1l m vector, @, is a m 1 vector, known as the state vector, and €, are zero-mean,
[E(€,)=0], serialy uncorrelated disturbances with Var(€, )= h,. The unobservable elements of the state
vector are generated by afirst-order Markov process, known as the transition equation: a, = Ta, , + F\’[ht ,
where T, isam'm, R isam’ g matrix and h, isa g 1 vector of serially uncorrelated disturbances with

E(h,)=0 and Var(h, )= Q,. The measurement and the transition equation are the core of the state space
form. However, to complete the state space representation it is necessary to assume that, on the one hand, the

first two moments of the initial state vector a, are E(a )= @, and Var(a ,)= P, and that, on the other, the
disturbances €, and h, are uncorrelated with each other in all periods E(€, ht' )=0 and uncorrelated with
theinitial state E(€, a(')):o and E(ht a(') )=0inall periods. The system of matricesis composed of z,, T,
and R, which are assumed to be non-stochastic. Under the conditions we have set so far the model is time-

variant. It would be time-invariant or time-homogeneous if the subscripts of the system of matrices and h[

and Q could be dropped.

The Kalman filter is a procedure of recursions used for computing the optimal estimator of the state
vector at time t. It is the device used by state space form as just the least squares computations are used by
the regression model. The use of the Kalman filter requires that the disturbances of the initial state vector be

normally distributed. Observations of Y up to period t-1 are used to compute &,_, , the optimal estimator of
a, ;. The covariance matrix of the estimation error is P_, = E[(a, ;- &,_; ) (@,.;- &_,)]. The
prediction equations are composed of: i) the optimal estimator of @, (it minimizes the Mean Square Error-
MSE) which is constructed as: atlt_lz 'I't &,_,, and ii) the covariance matrix of the estimation error:
Pl.,=T.R_ T.'"+ RQR". The updating equations work once a new observation of Y, is known. These
equations are: 8=k, + R, z'f," ({-zal,) ad R=R|,-Rl.,2'f 'z Rl whee
f,.=2P}.,z'+h . The set of prediction and updating equations conform the Kalman filter. That set of

equations can be written as a single set of recursions from &,|_, to a,,,} . In this case, we may write

a.qh=(T., - Kz)al ,+ K.Y, where K, is the gain matrix, computed as K, = T,,,P}_,z'f,*, and

M These paragraphs are based on Harvey [1989], Harvey [1993] and Koopman et al. [1995], where
more elaborated presentations can be found.



the recursive equation for the error

Tt+1( I:z-llt' th-lztI ft- lzt th-1)Tt+1l+F\>t+1Qt+1R+1I :

covariance

matrix

is
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