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Abstract

Structural time series models, frequency domain analysis, the HP-filter, and the Blanchard-
Quah decomposition, are used to observe, some peculiarities of the business  cycle. Such
properties are those related to the volatility of the temporary component and the duration of the
business cycle during  both 1925-1994 and 1950-1994. For the longer period we find that
cycles between three and six years seem to be the most important for the variability of output;
volatility is greater for GDP than for per capita GDP, except when the processes are linearly
detrended. For  period 1950-1994, although the linear trend plus cycle model does not perform
very well, cycles of about eight years seem to be most important for the cycle. The results of the
Blanchard and Quah decomposition show that demand shocks have important explanatory
attributes for output fluctuations. However, supply shocks, are dominant in the behaviour of
output.
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1. Introduction
The goal of this paper is to obtain some evidence on the nature of the temporary and permanent

component of Colombian output. Since, a priori, there is no preferred method, we use a variety of techniques in a

complementary way, in order to capture the peculiarities of the business cycle in Colombia, a small export

commodity-dependent economy. The properties in which we are interested, are those related to the volatility of the

temporary component and the duration of the business cycle between 1925 and 1994, with special emphasis in the

period after 1950. In a bi-variate environment, output growth is decomposed to observe the quality of its reaction

when facing either a nominal or real shock.

Given the cyclical pattern suggested by the correlogram of the series, the first method we examine is the

structural time series representation due to Harvey [1985, 1993] in which, as main feature, the parameters are time

varying and have a direct interpretation. Second, we consider the Hodrick-Prescott filter brought to the context of

output fluctuations by Kydland and Prescott [1982] and Prescott [1986] and widely used in real business cycles

models when computing the stylized facts of the macroeconomic variables. Third, some basic spectral techniques

are employed to show the relative importance of different frequencies in the explanation of the variance of output.

The results of the spectral analysis relate to the first difference, the linearly-detrended and the Hodrick-Prescott

filtered output. Finally, we depart from the univariate framework to consider a decomposition based on the vector

autoregressive method proposed by Blanchard and Quah [1989], motivated with a small-macro model used to

investigate demand (money) shocks and supply (technology) shocks.

Analysis of the components of Colombia’s output has been previously undertaken using a different

approach. Clavijo [1992] and Cuddington and Urzua [1989], for example, use the Beveridge and Nelson [1981]

decomposition to estimate the permanent and temporary components of GDP. However, given that this

decomposition is not unique, it is not used it in this work.

This paper consist of  five sections, the first of which is this introduction. In the second section,

unobserved components models, are used to examine the structural components in the evolution of output, as well

as, the Hodrick and Prescott [1980] filter. In the third section, we use some basics of spectral analysis to find the

hidden cycles of output behaviour between 1925 and 1994. In this case we use some frequency domain concepts

with clear interpretation in structural time series models. In the fourth section, the temporary and permanent

components problem is considered in a bi-variate framework, following the method put forward by Blanchard and

Quah [1989]. The fifth section presents some conclusions.

2. Decomposing Output Time Series
Suppose that, in a univariate framework, output can be decomposed into two components: trend

(permanent) and stationary (temporary) components. Thus, we may write:

t t tY  =  +  µ ε (1)



where Yt , µt , and εt are the observed output, trend and stationary components, respectively. Different

assumptions have been used with respect to the statistical properties and the implied representations of the

components of Yt  in (1). For example, to derive the properties of forecasts, Muth [1960] assumed a trend

component represented by a random walk:

t t -1 t =   +  uµ µ (2)

where the white noise ut  is uncorrelated with the temporary component εt , also assumed white noise; that is εt ~

i.d.(0,σε
2 ), ut ~ i.d.(0,σu

2 ), and E(εt , ut i− )=0, for all i. Accordingly, the first difference of Yt is stationary:

∆ t t t t-1Y  =  u  +   -  ε ε (3)

In (3) there is only one observable realisation ∆Yt  and two intrinsic indivisible or unobservable

realisations, ut  and εt , each with identified variances. The reason for this is that the variance of  ∆Yt , σ∆Y
2 , is

σu
2 +2σε

2  while the first lag autocovariance is equal to σε
2 , so that we can obtain σu

2  as σ∆Y
2 -2σε

2 . With this

information the components of (2) are recoverable (see Enders [1995]). This will be the case as long as the trend

component - µt  - is a random walk and ut  and εt i− are (for all i) not correlated.

Beveridge and Nelson [1981] assume that ut and εt  are perfectly correlated. They show that a sequence

with an ARIMA (p,1,q) representation contains a random walk stochastic trend and that such a sequence can be

decomposed into a stochastic trend plus a stationary component. To illustrate the Beveridge-Nelson decomposition

for a general ARIMA (p,1,q) model we may write:

φ θ θ(L) Y =   +  (L)at 0 t∆ (4)

where, φ(L)=1-φ1 L-...-φp
pL  and θ(L)=1-θ1 L-...-θq

qL . This approach assumes that ut and εt from (1) and (2),

respectively, are linearly combined into at  in (4). Solving for ∆Yt , we have:

∆ t
-1

0
-1

t tY =  (L )  +  (L )  (L)a  =   +  (L)aφ θ φ θ α ψ (5)

while the corresponding expression for Yt  is:

t t-1 tY =  Y  +   +  (L)aα ψ (6)

If lagged Yt − 1  is recursively substituted out, and it is assumed that Y0 =0 and a j =0, for j≤ 0, we obtain:



t
j=1

t

jY  =  t +  (L)aα ψ∑ (7)

which may be re-expressed as:

t t
j=1

t-1

jY  =  t +  (L)a + (L)aα ψ ψ∑ (8)

The first two terms on the right-hand side correspond to the permanent component ( µt , which is a

random walk with drift), while the third term identifies the stationary component. Expression (2) can be also

written as:

t t-1 t
j=1

t-1

jY  = + L L a + (L)aα µ ψ ψ+ − ∑( )( )1 (9)

which provides the Beveridge-Nelson decomposition of Yt  which is represented by a general ARIMA (p,1,q)‡.

Note that in (9) the sequence at involves the white noise sequences ut  and εt  in the case above, which, as a

result, appear to be perfectly correlated, since both vary with at . However, there is no reason to believe a-priori

that innovations of the permanent and temporary components are perfectly correlated. The correlation between

them can lie between -1 and 1. Without such a knowledge, the decomposition of any sequence into a random walk

plus drift and a stationary component is not unique. Cuddington and Urzua [1989] use the computational method

suggested by Cuddington and Winters [1987] to perform the Beveridge-Nelson decomposition of the logarithm of

Colombian GDP between 1930 and 1985. They conclude that under this decomposition, the cycles have shorter

duration and less amplitude than in the case of a linearly detrended sequence§.

Different assumptions about µt  and εt , other than Beveridge-Nelson's perfect correlation have been

introduced to model unobserved components**. For example, to decompose the logarithm of real US GDP, Watson

[1986] assumes that the stationary component is AR(2) and the innovations ut  and εt  are uncorrelated, which

seems to be more sensible. Harvey [1985, 1989] and Clark [1987], on the other hand, use the Kalman filter, within

a state space framework, to set up unobserved components models. These models are called structural time series

models, which we consider next.

2.1. Structural Time Series Modelling
                                                       
‡ For a discussion of the Beveridge-Nelson decomposition, see also Stock and  Watson [1989], Hamilton
[1994, p 504] and Enders [1995, p 186], among others.
§ See also Clavijo [1992] for a Beveridge-Nelson decomposition of Colombia´s output.



Under structural time series modelling the components have a direct interpretation, explanatory variables

are functions of time and the parameters are time varying [Harvey, 1993]. Within this context, the statistical

formulation defined by (1) and (2) is referred to as the local level (or signal plus noise) model from which we can

compute the signal-to-noise ratio σu
2 /σε

2 . A local linear trend model can be obtained by considering (1) together

with:

t t-1 t-1 t =  +   +  uµ µ β (10a)

t t-1 t =   +  β β ξ (10b)

where ut  and ξt  are white noise disturbances mutually uncorrelated with zero means and variances σu
2  and σξ

2 ,

respectively. The error ut  affects the level of the stochastic trend, while ξt  affects the slope of it. Hence, when

σu
2 =σξ

2 =0, µt  reduces to a deterministic linear trend. When σu
2 =0 but σξ

2 >0, the trend is an I(2) process,

which is relatively smooth. For annual economic time series, as we have here, the traditional formulation extends

(1) by introducing a cycle term, ψ t . Thus we have:

t t t tY  =   +   +  µ ψ ε (11)

where the stochastic linear trend, µt , remains as in (10), and εt  is white noise uncorrelated with ξt  and ut  for

all t. A deterministic cycle is a sine-cosine wave with a given period. A stochastic cycle results when a deterministic

one is shocked with disturbances and the damping factor is added. The statistical specification of the stochastic

cycle ψ t  takes the form:
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while 0 ≤ ω ≤ π, is the frequency in radians, κt and κt
* are white noise uncorrelated disturbances with zero means

and variances σκ
2 (=σκ*

2 ); ψ t
*  appears by construction in order to form ψ t ; and 0 ≤ ρ  ≤ 1 is a damping factor of

the amplitude. The disturbance makes the cycle stochastic rather than deterministic, and the cycle will be stationary

if ρ <1.

The stochastic process (12) becomes a first-order autoregressive process if ω is 0 or π; this arises because

sin ω is zero when ω=0 or ω=π. As a result, the equation generating ψ *  is redundant. The first equation of the

system described by (12) becomes ψ t = ρψ t − 1 +κt  when ω =0 or ψ t =-ρψ t − 1 +κt  when ω =π.

                                                                                                                                                                        
** Stock and Watson [1989] present a survey of methods of decomposing  macroeconomic variables and the
most relevant assumptions that such methods embody.



By using the lag operator, L, so that X t d− = L Xd
t , the cyclical component (12) can be written as:
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The solution for ψ t  is:

t
t t

*

2 2
 =  

(1-   .L) + (   .L) 
1- 2   .L +  .L

ψ ρ ω κ ρ ω κ
ρ ω ρ

cos sin
cos

(14)

and after substituting (10) and (14) in (11), the following expression for Yt  is obtained††:
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The model in (15) is known as the trend plus cycle model‡‡, which is estimated in the time domain

framework by using the Kalman Filter§§. Consequently, the models are set into state-space form, where the state

vector is α t =(µ β ψ ψt t t t, , , * )'. To initiate the Kalman filter, the mean square errors of µt and βt  are set equal

to large but finite numbers, while the mean squared error matrix of (ψ ψt t, * )' is set equal to the unconditional

covariance matrix of (ψ ψt t, * )'. The likelihood function is maximised (numerically) with respect to σε
2 , σu

2 ,

σξ
2 , σκ

2  , ω, and ρ.

The measurement equation of the trend plus cycle model required by the state space formulation can be

written as:

[ ]Yt t t= +1 0 1 0 α ε (16)

while the transition matrix may be expressed as:

                                                       
†† ARIMA models can be interpreted as reduced forms of structural time series model. These involve several
disturbance terms which are combined in the ARIMA models which currently have only a single disturbance
term [Harvey, 1993]. An example of this occurs in the previous section when we move from Muth [1960] to
Beveridge and Nelson [1981] decompositions.
‡‡ An alternative model used by Harvey [1985] is the cyclical trend model. This model is specified by
carrying the cyclical component from (13) to (10a). Thus, we would have Yt = µt  +εt  where

µt = µt − 1+ βt − 1 +ψ t − 1 + ut .
§§ Appendix 1 to this work contains a sketch of the Kalman Filter and the state space form of the particular
problem here.
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The covariance matrix of the vector of disturbances in (17) is a diagonal matrix with elements {σu
2 , σξ

2 ,

σκ
2 , σκ

2 }. The model is observable (identifiable) unless ρ  is zero or ω is either zero or π. The condition that σξ
2

and σκ
2  be strictly positive is necessary for stability (see Harvey [1989]). Diagnostic checking tests can be carried

out by using the Ljung-Box Q-statistic, the H-statistic, and the RD
2  measure of goodness of fit. The Q-statistic is

constructed as:

Q =  T (T + 2) (T - ) r ( )* *

=1

p
* -1 2

τ
τ τ∑ (18)

where T* is the number of residuals (usually T-2) and r(τ) is the τ-th autocorrelation in the residuals. Under the null

hypothesis, the Q-statistic follows a χ2  distribution with p-(n-1) degrees of freedom, where n is the number of

parameters. The H(m)-statistic is a test for heteroscedasticity, which is constructed as:

H(m) =  t=T -m 1

T

t
2

t=k+1

m+k

t
2

+
∑

∑

ε

ε
(19)

where m=T*/3 or the nearest integer, k=T-T*. The H(m)-statistic is the ratio of the sum of squares of the last m

residuals to the sum of squares of the first m residuals. This statistic is centred around unity and should be treated as

having an F distribution with (m,m) degrees of freedom. A high (low) value indicates an increase (decrease) in the

variance over time [Koopman et.al, 1995].

Finally, the goodness of fit is carried out with the coefficient RD
2 which compares the residual sum of

squares with the sum of squares of the first differenced observations about their mean. Hence, we may write:

D
2

* 2

t=2

T

t
2

R  =  1- T

( Y - Y )

εσ

∑ ∆ ∆
(20)



The sample autocorrelations of ∆GDP and ∆GDPPC between 1950-1994 and 1925-1994, shown in

figures 1.a -1.d, do not clearly suggest a white noise process for any series***. Instead, because of the wave-shaped

behaviour, the correlograms indicate a cyclical pattern: this is the most important criterion employed to decide

whether a structural time series decomposition should be used or not. Therefore, it allows us to carry out a

structural decomposition of output by using (15) [Harvey, 1985]. The corresponding estimates of the model (15)

and the local linear trend model -with no trigonometric cycle at all†††- appear in table 1. The results are not,

however, auspicious. Except, for the case of GDP (1950-1994), the estimates in the model with no trigonometric

cycle (local linear trend) present a better goodness of fit ( RD
2 ) than the estimates of (15). In addition, the estimates

of Y are, in all cases, close to unity, which indicates that either there is high persistence or the model may be

inappropriate since the variable could be still nonstationary. In the case of GDP (1950-1994), the trend plus cycle

model suggests a period near to eight years. The rest of the results suggest a deterministic cycle between 5 and 9

years, but the diagnostic statistics suggest that these models may not be very reliable. Only in the case of GDP

(1950-94) the Q-statistic is not significant and some evidence of heteroscedasticity is found in the residuals for the

longer sample period in both GDP and GDPPC.

Needless to say that we could not extract an obvious conclusion from the results of structural time series in

terms of business cycles since no neat deterministic cycle arises according to the size of ρ and stochastic movements

are important only in the case of GDP (1950-1994), according to σκ
2 . Among the models in table 1, the linear

trend plus cycle model for GDP (1950-1994) presents some attractions in RD
2 , the standard error, and the

estimated variances of the residuals, specially σξ
2 .

2.2. The Hodrick-Prescott Decomposition
There has been increasing use of the Hodrick-Prescott‡‡‡ (HP) filter for trend removal of the aggregate

economic series to the study of stylized facts in the context of business cycles. The key feature of the HP filter is in

defining the trend by the computational procedure used to fit the smooth sequence such that its key business cycles

facts are kept. Explicitly, the criteria used by Kydland and Prescott [1990] to select the trend component -that

results from the HP-filter are that: i) it is that curve which would be drawn by hand to fit the sequence; ii) it has to

result from a linear transformation of the sequence which has to be standard for all the sequences; iii) it has to be

                                                       
*** The data sources are: Easterly [1994] for 1925 - 1929; Cuddington and Urzúa [1989] for 1930-1949;
Principales Indicadores Económicos 1923 - 1992. Banco de la República for 1950-1992; and Revista Banco
de la República different issues for 1993 1994.
††† The model set in this way (with no sinusoidal cycle) is similar to that used by Clark [1987] to study the
behaviour of US industrial production and gross national product using quarterly data. The cyclical
component in Clark [1987] is assumed to be an AR(q) process.
‡‡‡ The method is also called Whittaker-Henderson Type A method (see  Hodrick and Prescott, [1980] and
Prescott [1986]). Applications of the filter are found throughout, e.g. Kydland and Prescott [1990], Kim,
Buckle and Hall [1995].



simple to compute, free of judgements and reproducible for all the sequences; and iv) small changes in the sample

size should not produce considerable changes in the values of the components.

The HP filter is a low-frequencies suppressor which results from minimizing the squared deviations of a

trend component, τt , from a sequence, {Yt }, subject to the constraint that the sum of the squared first difference of

the growth rate should not be too large. That is:

min ( )
{ }τ

τ
t t

T t

T

t tY
=

∑ −
=1 1

2 (21)

subject to

t=2

T -1

t+1 t t t-1
2[( - ) - ( - ) ]   ∑ ≤τ τ τ τ µ (22)

where Yt  is the logarithm of the (raw) variable. In general, a smooth trend results when the value of µ  is small.

The growth rate of the trend component [(τ τt t− − 1 ), for t=1,..T] is assumed to vary smoothly over time

while the deviations from τt are assumed to have zero (or near to zero) mean. The term (Yt -τt ), (a T×1 vector that

we label below ψ ,) can be interpreted as the cyclical component, while the term [(τ τt t+ −1 )-(τ τt t− − 1 )] can be

interpreted as the change in the growth rate of the trend component§§§. The operability of the HP is straightforward.

In matrix form, the problem stated in (21)-(22) can be rewritten as min{τt  } ψ ψ' +λ ( Kτ )´ Kτ , where λ is the

Lagrange multiplier, K is a T×T matrix and τ is a T×1 vector. The product Kτ (=[(τ τt t+ −1 )-(τ τt t− − 1 )]) is

written as:
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The solution to the minimization problem is found for τt = A Yt
− 1 , where A=I+λK'K and I is the identity

matrix (see Danthine and Girardin [1989]). The Lagrange multiplier λ relates the variance of the cyclical

component to the variance of the (second difference of) trend component. In other words, the parameter λ signals

the importance attributed to the fit of {τt } with respect to the smoothness of {τt }. When λ is high the HP filter

operates as a linear time trend and persistence increases. This occurs since λ penalizes the variations in the growth

rate of the trend component {τt }. Put another way, when we choose a high λ we are choosing a smooth τt  from

(21)-(22); when we choose λ to be zero, Yt =τt  and the cycle is zero for all t.

                                                       
§§§ These terms are interpreted as the fit of {τt } and the smoothness of {τt }, respectively.



The choice of the smoothing parameter (µ) is the main drawback of the HP filter. If the cyclical

component and the change in the growth rate of the trend component were identically and independent normally

distributed with mean zero and variances σ1
2  and σ2

2  respectively, the problem: min{τt } σ1
2− (Yt t− τ ) 2 σ2

2−

[(τ τt t+ −1 )-(τ τt t− − 1 )] 2  has the same solution as that of (21)-(22). Thus, λ=( σ σ1 2/  ). However,

these components are not normally distributed. Hence, Hodrick and Prescott [1980] picked a value of µ so that the

Lagrange multiplier of the constraint is 1,600 by arguing that a 5% of the deviation from the trend per quarter is

moderately large as is a one-eighth of one percent change in the growth rate in a quarter. For annual data, the

parameter λ is set to 400****.

The panels of figure 2 show the trend obtained by applying the HP procedure to GDP and GDPPC, along

with the trend in the limiting case (λ→  large or µ→  0 ): the linear trend. The panels in figure 3 show the HP

detrended GDP and per capita GDP and contrast them with linearly and differenced detrended series. Regardless

that fluctuations are less pronounced in the case of the HP filtered series, these follow the linearly detrended series.

However, Singleton [1988] shows some evidence according to which HP filtering has similar effects to differencing

the data since both detrending methods give essentially zero weight to the very low frequencies while amplifying

the power spectrum at high frequencies††††. Nevertheless, we could add that such a similarity depends on the values

selected for the Lagrange multiplier λ: the smaller the value of the Lagrange multiplier the higher the similarity

between HP and first-difference filtering‡‡‡‡. According to Singleton [1988], an implication of filtering the data is

that stylized facts, used to characterize business cycles, could be distorted. King and Rebelo [1993] reinforce this

view by pointing out that the HP filter could remove important time series components that have traditionally been

regarded as representing business cycle phenomena. However, in the univarite context of this work, it is not

appealing to verify this hypothesis, since King and Rebelo refer basically to cross-correlations with other variables

typically used in business cycles analysis. In the case of GDP and GDPPC of Colombia, the standard deviations for

the HP filtered series are 2.62% and 2.77%, respectively. The same statistics for the linearly detrended and

differenced series are: 5.40% and 4.12%; and 2.41% and 2.52%, respectively, for the period 1925-1994. These

estimates suggest that some caution should be taken when considering the volatility of output since GDPPC

appears more volatile than GDP but only when the processes are linearly detrended.

Apart from the intuitiveness of the definition of trend, the HP filter has the ability to render stationarity

even to series integrated up to the fourth order [Danthine and Donaldson, 1993]. However, King and Rebelo [1993]

                                                       
**** The preceding arguments about λ or µ are set by Harvey and Jaeger [1993] in terms of the structural
time series representation of the previous section. According to them, the HP filtering is equivalent to
imposing the restrictions σu

2 =0, ψ t =0, and  σε
2 /σξ

2 =λ in models (10) and (11). Thus, the cycle is

explained by εt , βt , and ξt .
†††† Prescott [1986] interprets the HP decomposition as a high pass linear filter which resolves in a better way,
than conventional spectral filters, the problem of the end of the sample produced by the sharp cut-off (i.e. no
tapering is required). See next section.
‡‡‡‡ This result is not shown.



demonstrated that under some conditions the HP filter can be an optimal filter for a second order integrated

process. Cogley and Nason [1995a] showed that filtering the data could introduce, spuriously, behaviour of business

cycles even to random walks. On the other hand, Harvey and Jaeger [1993] have criticised the HP procedure since

only irregulars (εt , in (11)) are reported as cycles under this filter. Accordingly, a model such as that described by

(11) and (10), which also contains ψ t  should be considered. However, in the previous section, we found no strong

support for this model during 1925-1994 and, in the case of GDP, only irregular fluctuations of the trend

component (σu
2 > 0) were detected by that procedure. Therefore, the cyclical component computed through the HP

filtering could be more valid.

3.  Some Frequency-Domain Peculiarities of Output
The frequency-domain approach is a technique both complementary and competitive to the time-domain

approach used to analyse the behaviour of the variables. Spectral methods provide a natural mathematical approach

to the mixture of regularity and nonregularity exhibited by business cycles, in particular to the lack of periodicity of

fluctuations [Granger and Hatanaka, 1964]. It is well known that the results of a spectral analysis will be much

more reliable the larger the sample size mainly when the analysis in focused on low-frequency variations. Here we

shall use a sample of seventy data points (1925-1994) which is not as large as frequency-domain analysts demand,

although it surpasses Granger and Hatanaka's recommendation of using data of at least seven times the length of

the largest cycle to study when the variable has no trend in mean [Granger and Hatanaka, 1964, p. 17-18].

Regardless that our interest here is in cycles of less than seven years, (since we attribute cycles of greater duration to

growth phenomena rather than to business cycles), we shall use the technique to find the more relevant cycles in the

behaviour of Colombia's output. In other words, we shall use this approach to trace the 'hidden periodicities' of the

sequence of output fluctuations in the last seventy years.

The information we are looking for is contained in the (power) spectra density function§§§§, S(ω), which in

strict sense shows the variance of Yt , decomposed into variance attributed to different frequencies (Englund, et.al

[1992]). The spectral density function is estimated through the periodogram, a diagram which  show peaks at

points corresponding to the hidden periods of a process. For the mean-subtracted sequence, ( )Y Yt − , the

periodogram or sample spectral density function, can be computed as:

n,Y -Y

2

t=1

n

t
-i t

tI ( ) =
1

2 n
  (Y - Y)e  θ

π
θ∑ (24)

                                                       
§§§§ The power spectra density function is the Fourier transform of the  autocovariance function, R(k), of the
sequence Yt . See Priestley [1981, p. 211] for a formal proof. Sargent [1979, p. 233] deals with this
equivalence. The standardised version of the power spectra density function is called the power spectrum.
Hence, the area under it is equal to one (see Harvey [1993, p. 167]).



where n is the sample and θ is a vector of parameters. Note that (24) involves n sample autocovariances.

The periodogram is asymptotically unbiased; however, in practice we obtain a biased periodogram since

the sample size is finite. In addition, it is not a consistent estimate of the spectral density function since i) the

variance of I
n Yt Y,

( )− θ  does not tend to zero as the data points increase*****, and ii) the covariance between

estimates at different but adjacent frequencies (ω 1 , ω 2 ), i.e. Cov [ I
n Yt Y,

( )− θ1 , I
n Yt Y,

( )− θ2 ], decreases as n

becomes large (n →  ∞), hence the probability of deciding in favour of a spurious cycle is higher. Thus, a smoothing

mechanism is implemented to reduce such erratic and wild fluctuations of I
n Yt Y,

( )− θ , and to generate a

consistent estimator of the spectrum S(ω). Such an estimator, S * (ω), may be written as:

k
*

s=-n+1

n-1

n (s)S ( ) =  
1

2
  k (s) R   sω

π
ω∑ cos (25)

where kn (s) is the lag window generator and R s( )  represents the autocovariance function. The function kn (s) is

a sequence of "weights" gradually decreasing, originated as a function of M (< n), which is the window parameter

or truncation point†††††. However, the smoothing procedure introduces some additional bias which has to be traded

off with the gain in consistency. Equivalently, S k
* (ω), can  be written as‡‡‡‡‡:

k
*

- n,y -y
*

nS ( ) =   I ( )W ( - )d  
t

ω θ ω θ θπ
π∫ (26)

The spectral window, W
n

(ω -θ), is the Fourier transform of K(s) which takes its maximum when θ = 0.

Given ω, S
k
* (ω) can be interpreted as a weighted average of periodogram-type estimates at frequencies centred on

ω [Granger and Newbold, 1986]. Its diagram shows the decomposition of the series's variance into variances

attributed to different frequencies of such series. A band of frequencies is considered important if it contributes a

high proportion to the variance of the series. The estimates of the spectral density can exhibit bias because of the

presence of one or more large peaks (side lobes or window leakage) in the underlying spectral density (Granger

[1966]). This fact could be explained by the high correlation between neighbour values of the data in levels, mainly

when the frequency of the data tends to be higher. However, such bias in spectral estimates can be reduced by

                                                       
***** The sample spectral density function is not an ergodic process.
†††††, There is no agreement about which criterion to use to select the truncation point, s: it can be the same
(lag) at which there is a cut off in the autocorrelation  function or it can be a fixed proportion of n or a
window closing process. Different expressions for k

n
(s) have been proposed. Here we use the Bartlett

window [k
n

(s)=1-|s|/M if M≥|s|, or 0 if |s|>M]. For a complete set of windows used see  Priestley [1981].
‡‡‡‡‡ In practice, however, the expansion of any process is done by means of the "fast  Fourier transform"
algorithm that computes the Fourier transforms and permits computation of the  periodogram I n Y, (ω) and

the spectrum S * (ω) directly from the data and does not need to compute (M-1)  autocovariances as in (25),
(Priestley [1981,p. 575]).



prewhitening the data through a mechanism called a taper§§§§§ (fader or data window). A second source of bias

depends on the bandwith (the interval or distance between the frequencies) adopted in the estimation of the

spectrum. The possibility of a biased estimator is reduced when the bandwith is chosen to be sufficiently small. The

result is a higher resolution of the estimate.

3.1. Data Preparation and Results
We regard the natural logarithm of the sequences of GDP and GDPPC as nonstationary. For the sake of

comparison, we assume that stationarity could be reached by detrending the sequences in the two usual ways: by

differencing the data set, and by removing a linear trend. In the first case, the mean is subtracted after differencing

the series. Hodrick-Prescott (HP) filtered series (with λ=400) are also included into the analysis. Thus, the

frequency-domain techniques are used on six time series, each zero-mean. The series are transformed into complex

numbers; we use a trapezoidal taper to smooth the cut off produced by the end of the series with the aim of

reducing the bias produced by the window leakage; the series, without trend, are also padded (added with zeros)

from 69 (or 70) up to 128 (the closest power-of-two number) to apply the fast Fourier transform algorithm more

efficiently; finally, the tent-shaped Bartlett window of size nine (M=9), with a truncation point in the lag window of

four (s=4), has been implemented to increase the consistency of the estimated spectrum******. Frequency is

converted from the rank [0,π] to the rank [0,34] expressed into years, so as to have a frequency up to 34 cycles of a

period of two years each during the sample period.

According to the results, the estimated power spectrum of GDP and GDPPC under the three detrending

procedures do not represent a random walk generating process (figures 4.a-4.c). If this was the case, the level of the

log spectrum would be about -3,5 [≈ln(1/34)]. The estimated mass spectrum for the linear detrended series is nearer

to this value than the mass spectrum of differenced and HP-filtered sequences.

The upper panel of figure 4.a, corresponding to ∆GDP, suggests a higher importance for hidden cycles

between 3 and 6 years (i.e. 23 and 12 on the horizontal axis). The mass spectrum is hump-shaped in both directions

taking cycles about seven years as benchmark (10 on the horizontal axis). However, the fact that lower frequencies

have less importance than higher frequencies is still true. When GDP is linearly detrended (upper panel of figure

4.b) the estimated spectra has Granger's "typical spectral shape" which is associated with the problem of leakage

pointed out above (Granger, [1966]). A high correlation between adjacent values of the variable in levels could

explain such a shape. Finally, the estimated mass spectrum corresponding to the HP filtered GDP (upper panel of

                                                       
§§§§§ Consider a factor bt applied to the mean-subtracted sequence ( Y Yt − ), as bt ( Y Yt − ), with b

t
=1 if

t=1,..n and bt=0 otherwise. The trapezoidal taper operates as t/15, if 1 ≤ t ≤ 15; 1 if 16 ≤ t ≤ 55; and t/15 if
56 ≤ t ≤ 70. Koopmans [1974, p. 301], reports in addition, a sine-type tapering procedure and a method for
constructing tapers.
****** A window size equal to the square root of the sample size is recommended. The explicit form lag
window operator (the Bartlett window) that we assume is given by 1-s/M, with s=0,..4, and M=9.



figure 4.c) peaks at very low frequencies: regardless that hidden cycles between three and six years are still

important, cycles of a greater period (say, about 8 years) seem dominant.

The high concentration of the power spectrum of sequences in cycles between three and six years seems to

be a feature of GDPPC as well. In other words, the proportion of the variance attributed to movements of output

about 3-6 years is high with respect to other components††††††. This result contrasts with the first signal about the

period given by the structural time series decomposition of section 2.2.1 above. Recall that the period of the cycle

found there was between five and nine years. However, given the diagnostic statistics, the results of these models

should be taken with some caution.

4. Permanent and Temporary Components of Aggregate GDP: A

Bivarite View
In the study of permanent and temporary components, the link between changes in long run trends and

shorter run departures from the growth path or trend rate of change‡‡‡‡‡‡ has been attributed a special role.

However, as we saw in section 2, in spite of the degree of correlation between the irregular components of the

underlying stationary and nonstationary parts of the sequence, an identification problem arises since this correlation

cannot be estimated directly from a single sequence. Assumptions about such correlation are that permanent and

temporary innovations are perfectly correlated as in Beveridge and Nelson [1981] or not correlated at all as in the

unobserved components models posed by Nelson and Plosser [1982], Harvey [1985], Watson [1986], and Clark

[1987], among others. As an alternative to that identification problem, multivariate frameworks have been used in

order to find a feasible separation of output's components. This view has been adopted, among others, by Sims

[1980], Blanchard and Quah [1989] and King, Plosser, Stock and Watson [1991].

The information we have gathered so far about the statistical nature of Colombia's output, shows

sequences characterized by cycles of about 5-9 years under a structural view; and important fluctuations of about 3-

6 years on GDP and GDPPC from the frequency domain results. However, we cannot say whether the output's

behaviour corresponds to a set of responses due to shocks originated either in the demand side or in the supply one

or whether the origin of the shock is immaterial to qualify the permanent and temporary components of output. To

find answers to such questions in this section we use a bi-variate framework to build a small macromodel where

prices and output are endogenous. We use the Blanchard and Quah [1989] decomposition which identifies demand

shocks as those having short run (temporary) effects on output but not otherwise. Conversely, supply shocks

produce long run (permanent) effects on output. This perception is set as the identifying restriction on the

parameters of a VAR system involving two endogenous (covariance-stationary) variables: ∆GDP and the rate of

unemployment; as in the case analysed by Blanchard and Quah [1989]  supply and demand shocks are uncorrelated

                                                       
†††††† A common spectral analysis definition of business cycles is that these are frequencies between six and
thirty-two quarters. That is between one year and a half and 8 years. This definition derives from the
duration of the cycles isolated by NBER [King and Watson, 1996].



and only the former is allowed to have a long run effect on output§§§§§§. In contrast to the result of Nelson and

Plosser [1982], who found in the supply (technological) shocks the driver of the US economy, Blanchard and Quah

end up with ∆GDP mainly driven by demand shocks in the case of that economy.

4.1. The Blanchard and Quah Decomposition*******

The Blanchard and Quah (BQ) method starts with a bi-variate system as:

t
j=0

Y  =  B(j) (t - j)
∞

∑ ε (27)

where Yt  is a 2×1 vector of endogenous covariance-stationary variables (growth of output and inflation rate, i.e.

Yt '=[∆GDP P]), εt  is a 2×1 vector of uncorrelated disturbances (demand, εt
d , and supply, εt

s  ,disturbances,

εt '=[εt
d  εt

s ]), and B(j) is 2×2 matrix of parameters so that:

B j
b j b j
b j b j

( )
( ) ( )
( ) ( )

= 





11 12

21 22

(28)

where b 11 (j) and b 12 (j) show the effect of εt
d  and εt

s  on ∆GDP j periods later while ∑ =j
k b j0 11( )  shows the

total effect of εt
d  on ∆GDP after k periods. Consequently, the matrix B(0) corresponds to the contemporaneous

effect of disturbances on Yt .

Because of the absence of correlation between disturbances, after normalization, we can write

Var(εt )=I
2

. The restriction about the effects of demand shocks on output implies:

( )0 = b
j=0

11 j
∞

∑ (29)

which closes the BQ specification. To explain the operability of the BQ decomposition consider a VAR system

which involves the two endogenous variables (∆GDP and P):

t
j=1

t- j tY  =  A(j)Y + e
∞

∑ (30)

where A(j) is a 2×2 matrix of parameters and et  is a 2×1 vector of innovations. The moving average representation

of (30) can be written as:

                                                                                                                                                                        
‡‡‡‡‡‡ Brunner and Meltzer [1986], use this equivalence.
§§§§§§ The scheme of Blanchard and Quah [1989] is essentially the same as King et al. [1991]. However, the latter
is more general since it considers a tri-variate system instead of a bi-variate one.
******* See also Quah [1988] for more theoretical issues about the decomposition.



t
j=1

j -1
t

j=0
Y  =  [I - A(j) L ]  e  =  C(j)e(t - j)

∞ ∞

∑ ∑ (31)

where C(0)=I. The elements of C(j) will be:

C j
a j a j
a j a j

( )
( ) ( )
( ) ( )

=
− −
− −







−1
1

11 12

21 22

1

(32)

The variance-covariance matrix of innovations is defined as Var( et )=Λ. Given (27) and (31), we can

write:

B(0) (t) =  e(t)ε (33)

hence,

B(j) =  C(j) B(0)× (34)

Now, to identify B(0), note first, that:

E(e e  =  Var(e ) =   =  B(0) B (0)t t t' ) Λ × ′ (35)

which imposes three restrictions on the components of B(0); and, second, allowing for (29), we have:

0 1 0 0
0

22 11
0

12 21= − × + ×
=

∞

=

∞

∑ ∑[ ( )] ( ) ( ) ( )
j j

a j b a j b (36)

which is a fourth identifying restriction. That is, to identify B(0), Blanchard and Quah have imposed : i)

orthogonality of the elements of et ; ii) unit variance of the elements of et ; and, iii) no long-run effect on output

growth of one of the elements of et . Once B(0) is identified, the original disturbances (demand and supply shocks)

are identified as well. To solve the 4×4 system that contains the restrictions, we adopted the positive root when

dealing with the quadratic expression which results in the solving process since the results seem to be more

sensible.

4.2. Motivation and Results
To motivate the BQ decomposition of GDP between permanent and temporary components, consider a

model close to  that originally used by Blanchard and Quah [1989]. The model, in logarithms, is:

Y M Pt
d

t t= − (37)

Y P E Pt
s

t t t t= − +−α λ( )1 (38)



λ λ εt t t
s= +− 1 (39)

M Mt t t
d= +− 1 ε (40)

where Yt
d  is aggregate demand, Yt

s  is aggregate supply, M t  is money, P t  is price level, λ
t

  is technology,

εt
d and εt

s  are the demand and supply original disturbances, E is the expectations operator and E
t − 1

P
t

 is the

expectation formed at the end of t-1 about the price level in period t. Equation (37) represents the (quantity theory

type) aggregate demand in terms of real balances; (38) is aggregate supply explained by differences between actual

and expected level of prices††††††† and shifted by technology; equation (39) represents the motion of technology;

and, finally, equation (40) shows the behaviour of money supply. By construction, the model associates technology

shocks to aggregate supply and money shocks to aggregate demand.

After some algebra the solution of the model can be written in terms of the original disturbances as:

∆ t t
d

t-1
d

t
s

t-1
s

t
sY =  

1+
( -  ) +  

1+
( -  ) +  

α
α ε ε α

α ε ε ε (41)

∆ t t
d

t-1
d

t
s

t-1
s

t
sP =  

1
1+

( - ) -  
1+

( -  ) -  
α ε α ε α

α ε ε ε (42)

which matches the system described in (27). However, it still cannot elude the point of Lippi and Reichlin [1993] in

the sense that an infinite order system, as in equation (27), is being represented by a first order system of equations

(41) and (42). But, this solution incorporates more lags in the disturbances, of the equation other than of output,

than the model used by Blanchard and Quah [1989]‡‡‡‡‡‡‡. The restrictions imply that technology shocks have both

short and long run effects on output and inflation; they also imply that money shocks have short and long run

effects on inflation but only short run effects on output. The BQ decomposition is implemented by using the first

difference of the logarithm of GDP and the rate of inflation, computed as the log-difference of Consumer Price

Index (CPI) in the period 1950-1994 (figure 5)§§§§§§§. Following Gaviria and Posada [1994] we have selected an

order-two VAR system to match the equation described by (30)********.

Figures 6.a to 7.b. show the impulse response and the accumulated response functions after a shock

received by the aggregates. Accordingly, the short and medium run dynamic motion of GDP growth in Colombia is

explained by both technology shocks or supply shocks and demand shocks. In the very long run, however, the

motion of the sequence of aggregate GDP is explained only by technological innovations. In figure 6.a. we observe

that a money supply shock of one standard deviation has effects on GDP that last for about 10 years while the

effects on prices remain for about 20 years. The initial effect on inflation is about 4.0% while it is only about 0.8%

                                                       
††††††† This specification might be associated with both Lucas's model of price misperceptions and nominal
rigidity such as Fisher's long-term labour contracts model all signed at the same moment.
‡‡‡‡‡‡‡ See also Blanchard y Quah [1993] and Quah [1995].
§§§§§§§ The Dickey-Fuller test does not  fail to reject the null that these variables are I(1).
******** In the rank given by SBC criteria this order is second top. The conclusions are not affected by
working with this order instead of with one.



on ∆GDP. However, there are two clear differences in the reactions of the variables: whereas  the effect on inflation

has the same sign as the demand shock, the effect on ∆GDP is positive up to the third period after the shock but

negative from there on. The message is that monetary shocks have a positive effect on ∆GDP in the short run but

not in the medium and long-run. In figure 6.b. the result is different since positive technological shocks have

unambiguous proportional effects on ∆GDP but negative in the case of inflation: a positive supply shock of one

standard deviation increases ∆GDP by 1.0% and reduces inflation by about 4.5%. From these initial points, the

effects start to die out, a process that lasts for 10-15 years.

The accumulated response functions of GDP (figure 7.a.) show that the effect of supply shocks on GDP is

permanent as expected from the BQ decomposition, whereas the effect of demand shocks is only temporary. In the

first case, the trend of GDP shifts by about 2.5% in the long run. Inflation (figure 7.b.) increases permanently with

demand shocks (by about 20%) in the long run and reduces permanently with productivity shocks (by about 10%).

The fact that the effects of any demand innovation take such a long time to disappear contributes to the persistence

of GDP. However, the effects of supply shocks dominate the variability of GDP, while demand shocks are the most

important explanation in the variability of inflation mainly in the long run. This assertion is supported by the

variance decomposition  (table 2).

5. Conclusions
Given the results, the final considerations about this work can be split into two sets depending on the

period to which we are referring. First for period 1925-1994, the frequency-domain analysis suggests that cycles

between three and six years make a high contribution to the formation of variability. That is, cycles between 3 and 6

years are important in the formation of the power spectrum of GDP. With respect to the volatility of GDP and

GDPPC, the standard deviations for the HP filtered series are 2.62% and 2.77%, respectively. The same statistics

for the linearly detrended and differenced series are: 5.40% and 4.12%; and 2.41% and 2.52%, respectively. These

results suggest some caution before considering the volatility of output since GDPPC appears more volatile than

GDP but only when the processes are linearly detrended. Structural time series decomposition does not suggest the

existence of any other cycle during this period. Conversely, the local linear trend seems to be the most appropriate

model for the series.

Second, for period 1950 - 1994, given that no neat deterministic cycle arises, the cyclical component of

output analysed through the linear trend plus cycle model, does not seem to be a characteristic of the time series

used here since, except for GDP, when the model presents some interesting results: only cycles of about eight years

are important in the behaviour of output. In the same way,  stochastic movements are important only in the case of

GDP. Finally, the results of the Blanchard and Quah decomposition show that demand shocks have important

explanatory attributes for output fluctuations. However, supply shocks are dominant in the behaviour of output. In

particular, nominal shocks of one standard deviation have effects on GDP that last for about 10 years while the



effects on prices doubles it. The initial effect on inflation is about 4.0% while it is only about 0.8% on ∆GDP. The

message is that money shocks have a positive effect on ∆GDP in the short run but not in the medium and long-run.

Positive technological shocks, on the other hand, have unambiguous proportional effects on ∆GDP but negative in

the case of inflation: a positive supply shock of one standard deviation increases ∆GDP by 1.0% and reduces

inflation by about 4.5%. From these initial points, the effects start to die out, a process that lasts for 10-15 years.

The accumulated responses of GDP show that the effect of supply shocks is permanent, whereas the effect of

demand shocks is only temporary. In the first case, the trend of GDP shifts by about 2.5% in the long run. Inflation

increases permanently with demand shocks (by about 20%) in the long run and reduces permanently with

productivity shocks (by about 10%). The effects of supply shocks dominate the variability of GDP, while demand

shocks are the most important explanation in the variability of inflation.



Table  1. Structural Decomposition of Output
Maximum Likelihood Estimates of Parameters

Statistic GDP
1950-1994

GDPPC
1950-1994

GDP
1925-1994

GDPPC
1925-1994

No Cycle Cycle No Cycle Cycle No Cycle Cycle No Cycle Cycle

RD
2 0.072 0.261 0.017 0.0002 0.011 0.011 0.11 0.025

                 H
(m)

0.69   (14) 0.49   (14) 1.09   (14) 1.10   (14) 0.23**

(22)
0.23**

(22)
0.22**

(22)
0.22**

(22)

Q

(p,d)

18.95***

(8,3)

11.45

(11,6)

9.61**

(8,3)

21.02***

(11,6)

14.15***

(8,3)

15.35**

(11,6)

9.50**

(8,3)

10.79

(11,6)

Standard
Error

0.017 0.014 0.018 0.018 0.023 0.023 0.024 0.024

Log L 174.1 181.2 169.7 169.7 250.9 250.9 248.5 249.0

2π/ω   (in years) - 7.95 - 4.9 - 5.00 - 9.3

ω - 0.79 - 1.27 - 1.25 - 0.67

ρ - 0.96 - 0.95 - 0.90 - 0.92

σu
2 (×105) 0.007 0. 3.4 5.8 5.8 5.8 6.2 6.1

σκ
2 (×105) - 0.017 - 0. - 0. - 0.31

σξ
2 (×105) 1.14 0.022 0. 0. 0. 0. 0. 0.

σε
2 (×105) 0.001 0.03 0. 0. 0. 0. 0. 0.

NOTE: Two asterisks mean significant at 5% level of significance, and three asterisks mean significant at the 1% level. “Cycle”
corresponds to equation (15) which in the text is called the trend plus cycle model while “No Cycle” is the same model without
the sinusoidal cycle component which in the text is called the local linear trend model: equations (1) and (10). Q(p,d) is the value
of the statistic of Ljung-Box, where p is the number of lags in (18) and d identifies degrees of freedom (d=p-(n-1)).



Table 2.  Blanchard-Quah Decomposition
Variance Decompositions

GDP Growth Inflation

Periods Ahead Demand

Shock

Supply

Shock

Demand

Shock

Supply

Shock

1 28,7 71,2 47,8 52,2

2 27,5 72,5 54,8 45,2

3 26,3 73,7 58,1 41,9

5 26,6 73,4 61,7 38,3

10 27,6 72,3 63,6 36,4

20 27,9 72,1 63,9 36,1

30 27,9 72,1 63,9 36,1

Figure 1. Correlogram of GDP ∆GDP
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Figure 2.  Trends of GDP and GDPPC 1925 - 1994.

NOTE: GDP (GDPPC) is the actual value of the variable.
Trend is the linear trend and HP400 is the trend component
of the HP filter with λ=400.
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Figure 3. Cyclical Components of GDP and GDPPC. 1925 - 1994

NOTE: HPGDP (HPGDPPC), DGDP (DGDPPC) and TGDP
(TGDPPC) are the HP, the first differenced the trend cyclical
components of output respectively.
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Figure 4.a.  Spectrum of ∆GDP and ∆GDPPC. 1925 - 1994
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Figure 4.b Spectrum of Linearly Detrended  GDP and GDPPC. 1925 - 1994
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Figure 4.c.  Spectrum of HP Filtered GDP and GDPPC. 1925 - 1994
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Figure 5. Growth Rate of GDP and Inflation.
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Figure 6.a.  Impulse Response Function:  Demand Socks.
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Figure 6.b.  Impulse Response Function: Supply Socks.
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Figure 7.a.  Accumulated Responses of GDP to Supply and Demand Shocks
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Figure 7.b. Accumulated Response of Inflation to Supply and Demand Shocks



Appendix 1

The State Space Form and the Kalman Filter††††††††

The observable sequence { Yt } can be represented by the measurement equation: Yt = zt t tα ε+ ,

where zt  is a 1× m vector, α t  is a m×1 vector, known as the state vector, and εt  are zero-mean,

[E(εt )=0], serially uncorrelated disturbances with Var(εt )= ht . The unobservable elements of the state

vector are generated by a first-order Markov process, known as the transition equation: α t = T Rt t t tα η− +1 ,

where Tt  is a m×m, Rt  is a m×g matrix and ηt  is a g×1 vector of serially uncorrelated disturbances with

E(ηt )=0 and Var(ηt )= Qt . The measurement and the transition equation are the core of the state space

form. However, to complete the state space representation it is necessary to assume that, on the one hand, the

first two moments of the initial state vector α 0  are E(α 0 )= a0  and Var(α 0 )= P0  and that, on the other, the

disturbances εt and ηt  are uncorrelated with each other in all periods E(ε ηt t
' )=0 and uncorrelated with

the initial state E(ε αt 0
' )=0 and E(η αt 0

' )=0 in all periods. The system of matrices is composed of zt , Tt ,

and Rt , which are assumed to be non-stochastic. Under the conditions we have set so far the model is time-

variant. It would be time-invariant or time-homogeneous if the subscripts of the system of matrices and ht

and Qt  could be dropped.

The Kalman filter is a procedure of recursions used for computing the optimal estimator of the state

vector at time t. It is the device used by state space form as just the least squares computations are used by

the regression model. The use of the Kalman filter requires that the disturbances of the initial state vector be

normally distributed. Observations of Y up to period t-1 are used to compute at − 1 , the optimal estimator of

α t − 1 . The covariance matrix of the estimation error is Pt − 1  = E[(α t ta− −−1 1  ) (α t ta− −−1 1 )’]. The

prediction equations are composed of: i) the optimal estimator of α t  (it minimizes the Mean Square Error-

MSE) which is constructed as: at t| − 1 = T at t − 1 , and ii) the covariance matrix of the estimation error:

Pt t| − 1 = T P Tt t t− 1 ' + R Q Rt t t ' . The updating equations work once a new observation of Yt  is known. These

equations are: at = at t| − 1 + P z ft t t t| '−
−

1
1  ( Yt - z at t t| − 1 ) and Pt = Pt t| − 1 - Pt t| − 1 z f zt t t' − 1 Pt t| − 1 , where

f t = z P z ht t t t t| '− +1 . The set of prediction and updating equations conform the Kalman filter. That set of

equations can be written as a single set of recursions from at t| − 1  to at t+ 1| . In this case, we may write

at t+ 1| = ( ) |T K z at t t t t+ −−1 1 + K Yt t , where Kt  is the gain matrix, computed as Kt = T P z ft t t t t+ −
−

1 1
1| ' , and

                                                       
†††††††† These paragraphs are based on Harvey [1989], Harvey [1993] and  Koopman et al. [1995], where
more elaborated presentations can be found.



the recursive equation for the error covariance matrix is Pt t+ 1| =

T P P z f z P T R Q Rt t t t t t t t t t t t t t+ − −
−

− + + + +− +1 1 1
1

1 1 1 1 1( | | ' | ) ' ' .
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