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Abstract

The construction of coincident indexes for the economic activity of a

country is a common practice since the fifties. The methodologies vary

from heuristic methods to probabilistic or statistical ones. In this paper,

we present a new procedure for estimating a coincident index of the state

of the economy which is optimum in a statistical sense. This procedure is
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based on state space models that do possess the steady-state property. We

apply our methodology for computing a coincident index for the Colombian

economy.

Key words: State of the economy, Coincident Index, State Space Mod-

els.
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1 Introduction

Coincident cyclical indexes have been broadly used since the work of Burns

and Mitchell (1946), which was completed in the fifties and sixties by the

National Bureau of Economic Research (NBER). These methods are based

on the estimation of a weighted average of some observed variables that

are supposed to move contemporaneously with the economic cycle or more

general with the global state of the economy. There are two problems in

these procedures: (1) as it is shown by Stock and Watson (1989, 1991) there

is not a precise description or definition of the global state of the economy

from a statistical point of view; (2) although this weighted average can be

seen as an estimation of a latent variable, there is no way of knowing if this

procedure is optimal under some statistical criteria.

In contrast with the traditional NBER methodology, in recent decades

several procedures have been developed which use techniques based on econo-

metric and time series analysis1. The papers of Stock andWatson (1988,1991,

1992) are some examples of this approach. They develop a probabilistic state

space model that can be used to estimate (or predict) a latent process and

this estimation is used as a coincident indicator of the economic activity.

Although the Stock and Watson’s (1989, 1991, 1992) model involves

simultaneously an unobservable process, as the latent state of the economy,

and fixed population parameters, in this paper we show that their model does

not have the steady-state property in the sense of Harvey (1989). Then, there

are two potential problems: (1) divergence of the maximum likelihood esti-

1A detailed reference of different approaches used to construct coincident and leading

indicators of the economic activity is shown in Lahiri y Moore (1991).
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mation algorithm for the hyperparameters of the model and (2) distortions

in the dynamic of the estimated non-observable process.

This paper develops an alternative method to compute a coincident index

for the economic activity. The proposed methodology is based on a modifica-

tion to the Stock and Watson’s (1989, 1991, 1992) model. The main changes

in the model are done in order to have a steady-state model and in this way

to formalize the theoretical procedures to be derived from it.

The paper is organized as follows. Section 2 shows the statistic model

to be used for the construction of the coincident index; Section 3 presents

an empirical application of the methodology to the Colombian economy us-

ing monthly data for the sample period 1980:01 - 2001:02. Finally, some

conclusions are presented in Section 4.

2 A statistical model

2.1 Specification and basic assumptions

Following the methodology of Stock and Watson (1989, 1991, 1992), from

now on SW, we initially define the state of the economy as a latent stochas-

tic processes in the sense of Sargent and Sims (1977) Singleton (1980) and

Geweke and Singleton (1981), which is denoted by {Ct}.
The basic hypothesis for the construction of a coincident index for the

economic activity is the following: there are observed variables X1t, ..., Xnt,

integrated of order one, that have a contemporaneous relationship with {Ct}
given by the equation
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Xit = βit + γiCt + uit,

for all t = 1, ..., N , N the length of the sample period, and for all i =

1, ..., n, where βit is a deterministic component that can include seasonal

components, γi is a constant that represents the weight of Ct in Xit and

uit is a stochastic component inherent to Xit and independent of Ct which

follows the autoregressive process

Di(B)uit = ²it ,

where Di(B) = 1− di1B − ...− dikBk, with B as the lag operator and ²it a

Gaussian zero-mean white noise process with variance σ2i . We also assume

that the stochastic processes {²it} are mutually independent, which implies
the mutual independence of the {uit} processes. Another interpretation of the
γi coefficients is given in the subsection (2.2), in terms of the first differences

of Xit and Ct.

In contrast with SWmethodology, these assumptions imply that the vari-

ables X1t, · · · , Xnt are cointegrated. Essentially, the previous equation ex-
press that one observed coincident variable is a linear transformation of the

state of the economy, plus an intrinsic random noise. Another difference with

respect to SW methodology is that the eventual seasonal component in the

observed variables is included into the relation between Xit and Ct. In this

way, we avoid some potential problems due to the seasonal adjustment of

the observed variables [see for example Hillmer and Tiao (1982), Harvey and

Jaeger (1993) and Harvey and Chung (2000)].
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The stochastic dynamic of {Ct} is described by the model

φ(B)∆Ct = δ + ηt ,

where φ(B) is an autoregressive stationary operator of order p, δ is a con-

stant and {ηt} is a Gaussian zero-mean white noise process with variance
σ2η. This equation shows another essential assumption of the methodology:

{Ct} is an integrated process of order 1 [I(1)]. Let Xt = (X1t, ..., Xnt)́,

βt = (β1t, ...,βnt)́, γ = (γ1, ..., γn)́, ut = (u1t, ..., unt)́ and ²t = (²1t, ..., ²nt)́,

then the previous equations can be rewritten in the following vectorial form:

Xt = βt + γCt + ut (1)

φ(B)∆Ct = δ + ηt (2)

D(B)ut = ²t (3)

where D(B) = I −D1B − ...−DkBk, with I the identity matrix of order n,
and Di = diag{d1i, ..., dni}.
The statistical problem to be solved consists in estimating Ct, for each t =

1, ..., N , using the observed information up to time t and taking the estimated

process, {Ct|t : t = 1, ..., N} say, as the coincident index. Technically, it

means to compute Ct|t = E(Ct|X1, ...,Xt), t = 1, ...,N . We can use the

Kalman filter to obtain these conditional expected values, therefore equations

(1)-(3) must be transformed into a state space model and this is done in

Appendix 1.

The state space model developed in Appendix 1 posses the steady-state

property, which essentially guarantees that the mean square error matrix

(MSE) of

αt|t = E(αt|X1, ...,Xt)
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with αt defined in that Appendix, converges to a fixed matrix as t→∞. The
proof of this claim is given in Appendix 2. It is important to note at this point

that the state space model used by Stock and Watson (1989, 1992) does not

have this property because the sequence of MSE matrices that their model

produces does not converge as t→∞. To show this we present the following
counterexample to their methodology. Using a simple simulation where we

take one non-seasonal coincident variable (n = 1), βt = 1, γ = 1, p = k = 1,

φ = 0.5, δ = 10.0, d = 0.7, σ2η = 1.0, σ
2 = 4.0 and the Gaussian noises {ηt}

and {²t} are simulated with seeds 14600 and 12000, respectively; we find
that using Stock and Watson’s model, the sequence of MSE’s of Ct|t tends to

infinite in a linear form with slope equals to 4.0 (see Figure 2 in Appendix

3). In addition, the process {Ct|t} does not reflect the stochastic dynamics of
the simulated {Ct}, that is I(1), as it may be deduced from Figures 1 and 3

in Appendix 3. In Figure 3, we have included the 95% prediction band that

is calculated with the root-mean-square-error (RMSE) of {Ct|t}. As we can
see there, the band does not include the simulated process. It is important

to note that under SW model, Ct|t = ∆Ct|t + Ct−1|t and that consequently

MSE(Ct|t) = MSE(∆Ct|t) +MSE(Ct−1|t) + 2E[(∆Ct −∆Ct|)(Ct−1 −Ct−1|t)]

goes to infinity because MSE(∆Ct|t) and MSE(Ct−1|t) do. We carried out

another simulations with n ≥ 2 (the number of coincident variables) and the
results were analogous to the previous ones.

Following the NBER methodology, it is important to have an estimation

of the weights of each observable variable included into the coincident index.
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From the SW approach, we obtain that

αt|t = (I −GtZ)(δµ + Tαt−1|t−1) +Gt(Xt − βt)

where Z, T and µ are defined in Appendix 1 and Gt is the Kalman-filter

gain matrix (Harvey, 1989). Since our state space model has the steady-

state property, there exists t0 such that for every t ≥ t0,

αt|t ≈ (I −GZ)(δµ+ Tαt−1|t−1) +G(Xt − βt)

where G is the limit of the sequence {Gt}. Therefore,

(I −KB)αt|t ≈ τ 0 +G(Xt − βt)

where B denotes the lag operator such that Bαt|t = αt−1|t−1, K = (I−GZ)T

and τ0 = δ(I − GZ)µ. In practice, t0 is not very large, then the previous

approach is valid for almost all the sample period under consideration. Now,

if the eigenvalues of K are smaller than one in module, then

αt|t ≈ τ + (I −KB)−1G(Xt − βt)

where τ = (I −K)−1τ0. Finally, we can write down that

αt|t ≈ τ +
∞X
j=0

KjG(Xt−j − βt−j) ,

thus

Ct|t = e01τ +
∞X
j=0

(e01K
jG)(Xt−j − βt−j) ,

where e01 = (1, 0, ..., 0) and K
0 = I .

We can note the following important facts: (1) in the computation of the

index, the observable variables are adjusted by seasonality (similar to the
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traditional methodology), (2) the calculated coincident index is not only a

weighted average of the present values of the seasonally adjusted variables

but also of its lagged values (different from the traditional approach that uses

just present observations) and (3) since the index depends on the intercept

δ, then a local linear trend of the latent process {Ct} can be captured.
It is important to note that for each observable variable we have a weights

sequence indexed by the lag j = 0, 1, ..., which is similar to an impulse-

response function in VAR modelling. This sequence goes towards zero when

j tends to infinite since the eigenvalues of K are smaller than one in module.

Then, with these weights we can compute the influence of each variable in

the coincident index through time.

2.2 Estimation issues

Once a group of coincident variables Xi has been chosen, the first step before

computing Ct|t is the estimation of the unknown hyperparameters of the state

space model (Harvey, 1989). Since we have included seasonal effects in the

model, in contrast with SW approach, we do not need to adjust the observed

variables by seasonality before they are included in the model. Specifically,

we postulated that if {Xit} is a seasonal process of length 12 (monthly data)
then

βit = bi + ω1,iS1t + · · ·+ ω11,iS11,t

where bi,ω1,i, ...,ω11,i are fixed parameters for the variable i and Sj,t, j =

1, ..., 11, denotes the jth seasonal dummy variable.

In order to have an identifiable model (Harvey, 1989) we fixed σ2η =
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1. The other parameters correspond to the weights γi, the coefficients of

the operators φ(B) and Di(B), and the variances σ2i . Altogether, we have

(14 + k)n + p + 1 parameters to be considered. For example, with k = 2,

n = 9 and p = 12 we obtain 157 unknown parameters.

The relative large number of hyperparameters and the use of the variables

in levels cause convergence problems in the numerical algorithms for maxi-

mizing the likelihood function and the estimates are very sensible to initial

values. This can be observed by simple simulations of the model proposed in

(1)-(3). In order to obtain convergence and robustness to initial values, we

propose to transform the original model by taking first differences to each

member of the equations (1) and (3). For equation (1) we obtain

∆Xit =
11X
j=1

ωi,j∆Sj,t + γi∆Ct +∆uit , i = 1, ..., n, (4)

and for equation (3),

D(B)∆ut = ∆²t . (5)

The likelihood function of the model (1)-(3) is equivalent to the one of the

transformed model since the proposed transformation is linear and its Jaco-

bian is equal to 1. Consequently, the information that contains the original

data about the generating probabilistic model, in particular about the pa-

rameters, is equivalent to the one of the differentiated data. The new state

space model based on equations (2), (4) and (5) is built up in Appendix 1.

Once the hyperparameters have been estimated, the new estimated state

vector αt|t is calculated using the Kalman filter and finally, Ct|t is obtained

from this estimation. We must observe that Ct = C0+
Pt−1

j=0∆Ct−j and that

∆Ct is the first component of the new state vector αt. Taking C0|t = 100 for
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all t we obtain

Ct|t = C0|t +
t−1X
j=0

∆Ct−j|t

where ∆Ct−j|t = E(∆Ct−j|X1, ...,Xt), j = 0, ..., t− 1, is calculated using the
fixed interval smoother (Harvey, 1989) for sample sizes varying with t.

In order to be consistent with the identification restriction of the model,

that is σ2η = 1, the series ∆X
0s are standardized. This is obtained with the

transformation

xit = ∆Xit/si

for each i = 1, ..., n, where

s2i = (1/N)

NX
t=1

(∆Xit − x̄i)2

and

x̄i = [1/(N − 12)]
NX
t=13

∆Xit .

The motivation behind this transformation is given by the fact that
NX
t=13

∆Xit/(N − 12) = γ i

NX
t=13

∆Ct/(N − 12) +
NX
t=13

∆uit/(N − 12)→ E(∆Ct)

when N →∞. Then, we can interpret s2i as a dispersion measure of the data
∆Xit around the constant E(∆Ct) = δ/(1 − φ(1)). It is important to note
that the process {∆Xit} is not mean-stationary since E(∆Xit) = βit changes
through time, although it is stationary in variance because Var(∆Xit) =

γ2iσ
2
∆C + σ

2
∆ui

is a constant.

An interesting interpretation of the parameters γi, i = 1, ..., n given in

equation (4) is based on the result

Corr(∆Xit,∆Ct) = σ∆C[γi/(γ
2
iσ
2
∆C + σ

2
∆u)

1/2]
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where σ2∆C = Var(∆Ct) and σ
2
∆u = Var(∆uit). In terms of the differentiated

variables, this implies that (1) if |γi| → 0 then Corr(∆Xit,∆Ct)→ 0 (there

is almost no linear association), (2) if |γi| → 1 then Corr(∆Xit,∆Ct) →
±σ∆C/(σ2∆C + σ2∆u)1/2 (an intermediate case) and (3) if |γi| → ∞ then

Corr(∆Xit,∆Ct) → 1 (the ideal case). On the other hand, we can see that

if γi and σ
2
∆C are fixed and σ

2
∆u is very large, Corr(∆Xit,∆Ct) ≈ 0. This

might be an indication that in {∆Xit} there is no relevant information about
{∆Ct}, in terms of linear association.

3 Diagnostics

Since our basic model is in state space form, we can use the standard pro-

cedures for validation of this kind of models(Harvey, 1989). This consists

on using a Portmanteau test to examine the orthogonality of the one step

ahead prediction errors, previously standardized. Additionally, plots of the

cumulative sum (CUSUM) and the cumulative sum of squares (CUSUMSQ)

are useful to detect structural changes or heteroskedastic behavior of the

marginal prediction errors.

Since we might have different groups of coincident variables and different

models for the same group of series, following Kitagawa (1987), we propose

to use the Akaike information criterion (AIC) as an instrument of selection.

12



4 An empirical application

In order to illustrate the theoretical results of Section 2, we calculated a

coincident index for the Colombian economic activity in the monthly sam-

ple period 1980:01-2001:02. The following variables were selected using eco-

nomic and statistical criteria2: current economic conditions (Fp1), number

of orders (Fp6)3, production of cement (Prcem), industrial production index

excluding coffee threshing (Ipr), index of employment for unskilled workers

(Iemob), currency in circulation in real terms (Efecr), demand of energy and

gas (Energa), total imports excluding capital and durable goods (Imp) and

loan portfolio of the financial system (Cart). The result of the statistical

tests indicated that these series are integrated of order one and that they are

cointegrated.

Following Altissimo et al.(2000), we used the index of industrial produc-

tion as a proxy of the economic activity (Ct) for identifying the autoregressive

order p. The initial values for the autoregressive parameters φi and the in-

tercept δ were taken from the estimation of an ARIMA(13,1,0) model for

this variable. The autoregressive order p = 13 was obtained using standard

methods of time series analysis. Given the results of the subsection (2.2),

the initial values of the parameters γ were taken all equal to 1.0. Since we

do not have reasonable proxies for the processes {uit}, we tried several val-
ues for the autoregressive order k. Taken into account the large number of

2The statistical criteria includes unit root and cointegration tests and analysis of cross-

correlation functions between each series and the index of the industrial production.
3The variables Fp1 and Fp6 are obtained from the opinion business survey by

Fedesarrollo.
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hyperparameters and the complexity of the estimation routines, these were

k = 0, 1, 2, 3, 4, 5. The initial values for the autoregressive parameters dij

were set all equal to 0.1. The identification of k was based on the Akaike

information criterion (AIC).

The maximum likelihood estimation of the hyperparameters of the model

(1)-(3) is based on the model specified in subsection (2.2). We used the

optimization algorithm of Broyden, Fletcher, Goldfarb and Shanno (BFGS)

as the numerical method, where the likelihood function is calculated through

its decomposition in terms of the one-step prediction errors (Harvey, 1989).

These are the results (standard errors in parenthesis):

Equation (1)4:

Fp1t = bβ1 + 0.139 bCt + bu1t
(0.023)

Fp6t = bβ2 + 0.106 bCt + bu2t
(0.022)

Prcemt = bβ3 + 0.049 bCt + bu3t
(0.006)

Iprt = bβ4 + 0.043 bCt + bu4t
(0.005)

Iemobt = bβ5 + 0.071 bCt + bu5t
(0.014)

Efecrt = bβ6 + 0.022 bCt + bu6t
4The results of the unit root and cointegration tests and the estimation of the coeffi-

cients β
0
s, associated with the deterministic part of the equation (1), are not presented in

order to mantain simplicity in the results. However, these estimations are available upon

request.
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(0.004)

Energat = bβ7 + 0.023 bCt + bu7t
(0.016)

Impt = bβ8 + 0.051 bCt + bu8t
(0.012)

Cartt = bβ9 + 0.064 bCt + bu9t
(0.022)

Equation (2):

∆ bCt = 0.098 + 1.581 ∆ bCt−1− 0.890 ∆ bCt−2− 0.085 ∆ bCt−3 + 0.378 ∆ bCt−4
(0.078) (0.258) (0.587) (0.731) (0.638)

−0.065 ∆ bCt−5 + 0.134 ∆ bCt−6 − 0.494 ∆ bCt−7 + 0.568 ∆ bCt−8
(0.416) (0.300) (0.318) (0.290)

−0.292 ∆ bCt−9 + 0.116 ∆ bCt−10 − 0.136 ∆ bCt−11 + 0.279 ∆ bCt−12
(0.293) (0.327) (0.342) (0.234)

−0.182 ∆ bCt−13
(0.086)

Equation (3):bu1t = 0.996 bu1t−1 ; bσ21 = 0.588
(0.006)bu2t = 0.992 bu2t−1 ; bσ22 = 0.594
(0.007)bu3t = 0.639 bu3t−1 ; bσ23 = 0.622
(0.050)bu4t = −0.169 bu4t−1 ; bσ24 = 0.101
(0.077)
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bu5t = 0.997 bu5t−1 ; bσ25 = 0.236
(0.003)bu6t = 0.873 bu6t−1 ; bσ26 = 0.128
(0.037)bu7t = 0.996 bu7t−1 ; bσ27 = 0.427
(0.004)bu8t = 0.904 bu8t−1 ; bσ28 = 0.981
(0.028)bu9t = 0.993 bu9t−1 ; bσ29 = 0.641
(0.002)

It is important to note that according to subsection (2.2), the estimates

of the parameters γi are adjusted by the ”standard deviation” si.This means

that these values must be multiplied by si to obtain estimations in terms of

the original variables. This also applies for the interpretation of the variancesbσ2i .
The CUSUM and CUSUMSQ statistics for the marginal prediction er-

rors are plotted in Appendix 4. These graphics show no evidence of miss-

specification of the model. Additionally, the plots of the weight sequences for

the variables that determine the coincident indexd∆C t|t are presented in Ap-
pendix 5. Here, the hat symbol denotes that, in practice, we need to use the

estimated hyperparameters for obtaining the index growth∆Ct|t (and in turn

Ct|t). Computation of these sequences is accomplished in accordance with

the results in subsection (2.1), but using the model specified in subsection

(2.2) and the interpretation of the weights magnitude is scale free because

of the previous standardization of the time series. The results indicate that
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the contributions of all the coincident variables included in the model have a

very similar pattern, where the effects are positive and large in the first lags.

The most important contributions to the growth of the coincident index are

given by the industrial production index excluding coffee threshing (Ipr), the

index of employment for unskilled workers (Iemob), the current economic

conditions (Fp1), the number of orders (Fp6) and the currency in circulation

in real terms (Efecr), respectively.
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Figure 4

The coincident index bCt|t is plotted in Figure 4. The dynamics of the
estimated index agrees with the stylized facts of the Colombian economy.

For example, the contractions of the index in the 1983 and 1989-1991 periods

are also found in the works of Melo et al. (1988) and Ripoll et al. (1995).

The slowdown of the economic activity in 1996 is also observed in several
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economic series including the industrial production index . Finally, the major

contraction of the index in the observed sample is presented in the 1998-1999

period.

5 Conclusions and Recommendations

In this work we have developed a new methodology for estimating a coinci-

dent index of the aggregate economic activity. The proposed methodology

follows the work of Stock and Watson (1989, 1991) including the following

modifications: (1) the statistical model requires that the coincident variables

are cointegrated, (2) in contrast to the SW model, our proposed state space

model has the desirable steady-state property, which permits useful and for-

mal interpretations of the model and the results based on it, (3) since we

include seasonal effects in the model we do not need to adjust the observed

variables by seasonality prior to be included in the model, (4) a practical

strategy is developed for estimating the unknown parameters and providing

the necessary initial values for the estimation stage.

We must note that the estimation algorithm for the hyperparameters

tends to produce very persistent autoregressive processes for the intrinsic

components of the observed variables. This relative problem will be investi-

gated in the future.
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APPENDIX 1

In order to put equations (1)-(3) in a state space form, let ct+j|t =

E(Ct+j|C0, C1, ..., Ct); j = 1, ..., p; C0 = 100; c̄t|t−1 = Ct|t−1 − δ;

αt = (Ct, c̄t+1|t, Ct+2|t, ..., Ct+p|t,u
0
t,u

0
t−1, ...,u

0
t−k+1)

0
,

T =



0 | I |
| 0

φ∗p+1 φ∗p · · · φ∗1 |
− − − − − − − − − −

| D1 · · · Dk−1 Dk

0 |
| I 0


;

where φ∗i denotes the ith coefficient of the polynomial φ
∗(B) = φ(B)∆ =

φ(B)(1−B);

G =


1

ψ∗1
...

ψ∗p

 ,

with ψ∗j the jth coefficient of the infinite polynomial

ψ∗(B) = 1 + ψ∗1B + ψ
∗
2B

2 + · · ·

such that φ∗(B)ψ∗(B) = 1;

R =


G 0

0 In

0 0

 ,
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Z =
³
γ | 0 | I | 0 | · · · | 0

´
.

and ζt = (ηt, ²
0
t)

0
.

Then, the state space model is specified by the following two equations:

αt = µδ + Tαt−1 +Rζt

as the system equation and

Xt = βt + Zαt

as the observation equation, where additionally

µ = (1,−1, 0, · · · , 0,φ∗p,0
0
, · · · ,00

)
0

if p > 1 and µ = (1,φ∗1 − 1,00)0
if p = 1.

We can establish the following reasonable initial conditions for this state

space model: as initial state vector

α0 = (100, 100− δ0, 100, · · · , 100,00
, · · · ,00

)
0

and as initial variance-covariance matrix

P0 = κI ,

with κ sufficiently large.

The state space form for the differenced data is obtained by redefining

the state vector αt as follows:

αt = (∆Ct,∆Ct−1, ...,∆Ct−p+1,∆u
0
t,∆u

0
t+1|t, ...,∆u

0
t+r−1|t)

0
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with ∆ut+j|t = E(∆ut+j|u1, ...,ut); j = 1, ..., r and r = max{2, k}. The new
matrix and vectors of the system are given by

T =



φ1 · · · φp−1 φp |
| 0

I | 0 |
− − − − − − − − − −

| 0 I

0 |
| Dr Dr−1 · · · D1


;

R =



1 |
| 0

0 |
− − −

| I

0 | Ψ1

| ...

| Ψr−1



,

where the matrices Ψj are the coefficients of the infinite polynomial matrix

Ψ(B) = I+Ψ1B+Ψ2B2+· · · such that D(B)Ψ(B) = I−IB; Z = (γ,0, I,0)

and µ = (1,0
0
)

0
. In fact, this state space model also satisfies the steady-state

property. The initial conditions are similar to those of the original model in

levels.
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APPENDIX 2

In order to prove that the state space model for the data in levels devel-

oped in Appendix 1 possess the steady-state property, we shall prove first

that the model is controllable and observable. We use the same notation of

subsection (2.1).

Proposition 1 . The state space model for the data in levels is controllable.

Proof . Initially, we can observe that the transition matrix T is block

diagonal, that is,

T =

 A 0

0 B

 ,

where

A =


0 | Ip

φ∗p+1 φ∗p · · · φ∗1


and

B =


D1 · · · Dk−1 Dk

In(k−1) 0


with Im denoting, in general, the identity matrix of order m. We must note

that matrix A has dimension (p+ 1)× (p+ 1), the size of B is nk× nk, the
zero matrix in the position (1, 2) of T is (p+ 1)× nk and the one in (2, 1) is
the transpose of the previous matrix. Since T is a block diagonal matrix, it

is not difficult to prove that

Tm =

 Am 0

0 Bm

 ,
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for all m = 1, 2, ....

In order to verify the controllability of the model, that is, that the block

matrix [R, TR, ..., T p+nkR] is of full row rank, we need to find the general

form of Bm. Beginning with

B2 =


E
(2)
11 E

(2)
12 · · · E

(2)
1,k−2 E

(2)
1,k−1 E

(2)
1k

D1 D2 · · · Dk−2 Dk−1 Dk

In(k−2) 0n(k−2)×2n

 ,

where

E
(m)
1,j =

 D1Dj +Dj+1 ; j = 1, ..., k − 1
D1Dk , j = k

,

and proceeding in a recurrent way from m = 3, we find that for m = k,

Bm =


E
(m)
11 E(m)12 · · · E(m)1(k−1) E(m)1k

...

E
(m)
(k−1)1 E

(m)
(k−1)2 · · · E(m)(k−1)(k−1) E

(m)
(k−1)k

D1 D2 · · · Dk−1 Dk


where, for each l = 1, ..., k − 2,

E
(m)
l,j =

 E
(m−1)
l,1 Dj + E

(m−1)
l,j+1 ; j = 1, ..., k − 1

E
(m−1)
l,1 Dk , j = k

and

E(m)k−1,j =

 D1Dj +Dj+1 ; j = 1, ..., k − 1
D1Dk , j = k

.
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Now, for j = 1, ..., k − 2,

T jR =



AjG 0 0

0 E(j)11 0
...

0 E
(j)
j−1,1 0

0 D1 0

0 In 0

0 0 0
...

0 0 0



,

for j = k − 1 the last block of the second column in the previous matrix is
In and for j = k this last block is D1.

Considering all the matrix [R, TR, ..., T kR] we get the following possibil-

ities. If D1 = 0 and D2 6= 0, we have already full row-rank. If D1 = D2 = 0

and D3 6= 0, we aggregate the matrix T k+1R and we obtain full row rank.

In the extreme case D1 = · · · = Dk−1 = 0 and Dk 6= 0 we aggregate T 2k−1R

and the full row-rank condition is obtained by means of these aggregations

because of the following reasons.

Let E(1)1j = Dj , j = 1, ..., k. Using a recursive procedure from m = 1 and

the previous expression for E(m)lj , which is also valid for all l = 1, ...,m with

2 ≤ m ≤ k, we obtain that

E(m)11 = f(D1, ..., Dm−1) +Dm ,

where f (D1, ..., Dm−1) is a polynomial of orderm in the matricesD1,...,Dm−1,

such that each term is a product that involves at least one of these matrix.
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As an illustration we have that

E(3)11 = D
3
1 + 2D1D2 +D3

and

E(4)11 = D
4
1 + 3D

2
1D2 + 2D1D3 ++D

2
2 +D4 .

Consequently, in the extreme case D1 = ...Dk−1 = 0, we obtain that

E(k)11 = Dk, a matrix that is supposed to have non-zero components on its

diagonal.

For the model to be controllable it is required that 2k − 1 ≤ p + nk or,
equivalently, 0 ≤ (n − 2)k + p + 1. Then, we have to analyze the following
cases: (1) if k = 0, i.e. the processes {uit} are white noise, the previous
condition is satisfied for all n and all p. (2) If k > 0, 0 ≤ (n− 2)k + p + 1 if
and only if [−(p+1)/k]+2 ≤ n. In this situation if n = 1 and k > p+1, the
condition is not satisfied, but if n ≥ 2, then for all k and for all p we always
obtain [−(p + 1)/k] + 2 ≤ n. In practice, n ≥ 2, but even if this is not the
case, k and p can be restricted in such a way that k < p+1. The restriction

is plausible since is not reasonable to have an autoregressive order for {ut}
larger that the one of {Ct}.

Proposition 2 . The state space model for the data in levels is observable.

Proof. Using a recurrent procedure for the powers of T 0 ("’" denotes
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transpose) we find that

[Z 0, T 0Z 0, ..., (T 0)pZ 0] =



γ0 00 00 00

00 γ0 00 00

00 00 γ0 00

...
...

... · · · ...

00 00 00 γ0

− − − − −
In D1 E(2)011 E(p)011

0 D2 E
(2)0
12 E

(p)0
12

...
...

... · · · ...

0 Dk−1 E(2)01k E(p)01k



,

where 00 denotes a row vector of zeros.

Then, the row rank of this matrix is less or equal to p + 1 + nk. Using

the structure of the matrix E(m)1j ; j = 1, ..., k; 2 ≤ m ≤ k and that (p + 1 +
nk) − 1 ≥ p for all n ≥ 1 and p, k ≥ 0, we conclude that the row rank of

[Z 0, T 0Z 0, ..., (T 0)p+nkZ 0] is p + 1 + nk, the dimension of the state vector.

Proposition 3 . The state space model for the original data has the steady-

state property.

Proof. Since the model is controllable and observable, consequently de-

tectable and estabilizable, respectively, and the matrix P1|0 = TP0T 0+RΣR0

is positive semidefinite, it satisfies the steady-state property (Harvey, 1989,

pp. 119); that is, the sequence of minimum-mean-square-error matrices in

the Kalman filter, converges to a fixed matrix.
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APPENDIX 3

Simulation of Ct using Stock and Watson’s model
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APPENDIX 4

CUSUM                                                        CUSUM SQ

v1
1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000

-50

-25

0

25

50

v2
1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000

-50

-25

0

25

50

v3
1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000

-50

-25

0

25

50

v4
1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000

-50

-25

0

25

50

v5
1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000

-50

-25

0

25

50

v6
1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000

-50

-25

0

25

50

v7
1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000

-50

-25

0

25

50

v8
1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000

-50

-25

0

25

50

v9
1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000

-50

-25

0

25

50

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
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APPENDIX 5

Lagged coefficients involved in the coincident index
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