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Abstract

In this theoretical report, the identifiability property of a coincident index
model is studied. As a result, characterization of the identifiability conditions
solves a model specification problem, which was detected in the design of an
earlier index for the Colombian economy.
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1 Introduction

Nieto and Melo (2001) developed a methodology for computing a coincident
index in levels for the economic activity, which is based on previous work
of Stock and Watson (1989, 1991, 1992). Their results were then applied
by Melo et al. (2001) in the design of a coincident index for the Colombian
economy and some of the index properties were analyzed. |

Although the Colombian coincident index obtained by Melo et al. (2001)
was adequate for tracking the state of the economy and some properties of the
state space model considered for designing the coincident index were studied
by Nieto and Melo (2001), a model specification problem was detected by
those authors. It consisted in the empirical persistence of some assumed
stationary processes and the strong difficulty of the optimization routines for
finding the likelihood function maximum. I feel these problems have to deal
with the model identifiability, an issue that has not been addressed yet, on
the knowledge of the present author. This is a key characteristic that must
be taken into account in model fitting, in order to get a precise idea about
the behavior of the likelihood function and, in turn, about the precision and
accuracy of the estimated parameters and about the model speciﬁcatioh.

This report is a summary of the main results found by Nieto (2002) about
this identifiability topic. In Section 2 I presentithe main equations that define
the coincident-index model and in Section 3, I include some of the Nieto’s

(2002) basic results. The last section concludes.



2 The statistical model

The basic hypothesis for the construction of a coincident index for the so-
called state of the economy process, denoted by {C;}, is the following: there
are observable processes { X1;},...,{ Xnt}, each one integrated of order one and
called coincident processes, that have a contemporaneous relationship with

{C:} given by the equation
Xit = Byt + YiC + ust

for all £ = 1,...,N, N the length of the sample period, and for all § =
1,...,n, where 3; is a deferministic component that can include seasonal
components, «; is a constant that represents the weight of C; in X;; and w, is
a stochastic component inherent to X;; and independent of C, which follows

the stationary autoregressive process
Di(B)ug = €

where Dy(B) = 1—dy B — ... — dy,B¥, with B as the lag operator and {¢;} a
Gaussian white noise process with variance 2. We also assume that the sto-
chastic processes {¢;;} are mutually independent among them, which implies
the mutual independence of the {u;} processes. Essentially, the previous
equations express that a deseasonalized coincident variable is a linear trans-
formation of the state of the economy (the latent variable) plus an intrinsic
random noise. A diﬁerence with previous methodologies is that the eventual
seasonal component in the observable variables is included directly into the

relation between X;; and C;, which has some advantages as quoted by Nieto

and Melo (2001).



The stochastic dynamic of {C;} is described by the model
¢(B)A0t =40+ T

where ¢(B) is an autoregressive stationary operator of order p, ¢ is a constant,
and {7n:} is a Gaussian white noise process with variance 072,. This equation
shows another essential assumption of the methodology: {C:} is an inte-
grated process of order 1 [I(1)]. Let X; = (X1t o, Xne) Bt = (Buty -, But),
¥ = (M, ey W)y Ut = (Utgy .o, Uns) and € = (€, ..., €nt); then the previous

equations can be rewritten in the following vectorial form:

X, = 5t+’70t+u; (1)
(B)AC, = &+, (2)
DB)u; = ¢ (3)

where D(B) = I—D;B—~...— DyB*, with I the identity matrix of order n, and
D; = diag{dy, ..., dni}. As noted by Nieto and Melo (2001), this specification
of the coincident model implies that the process {X;} is cointegrated.

The statistical problem consists in estimating C}; using the observed infor-
mation up to time ¢; ¢t = 1,..., N. The estimated process, {Cy; :t =1,..., N}
say, is considered as the coincident inder. Technically, it means to com-
pute Gy = E(Cy|Xy,...,Xy), t = 1,...,N. We can use the Kalman filter
to obtain these conditional expected values, and the corresponding details
were developed by Nieto and Melo (2001) and applied by Melo et al. (2001).
Computation of Cy is based on the so-called model hyperparameters, which
must be estimated; hence, in practice one gets an estimate {C’t|t} of {Cy:}.
Thus, before addressing the parameter estimation part of the problem, one

needs to know about the model identifiability.
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3 Model identifiability

Nieto (2002) has obtained some results about this topic on the basis of Bickel
and Docksum’s (1977) identifiability definition. This means to consider the
joint probability density of the process {X;: ¢ =1,..., N}, which is assumed
to be parameterized by a vector ¢ in some Euclidian parameter space. Let
p(x,%) be this parameterized density where x = (x,...,Xy). There is not
identifiability of the process distribution when 1, is not equal to 1, and
p(%,%1) = p(x,4) for all x in the range of X = (X, ..., Xy). Equivalently,
the joint distribution is identifiable if and only if each marginal distribution
is identifiable. |
With that concept in mind, I begin exploring this property for Nieto and
Melo’s (2001) state space model by means of some theoretical simple cases.
In the first one, I consider a single coincident variable X and set 3; = 0,

p=20,0 =0, and k = 1. Then, the basic equations are given by

Xt = '7C't + Uy
AC; = yr
(1 - dB)Ut = €,

where 7 is a real number and |d| < 1. As usual, I set 02 = 1, which gives
a model reparameterization in order to get C; dimensionless. I shall ex-
amine the identifiability character of the X;’s marginal density, for each
t=12,..,N.
'The equivalent state space model for the previous three equations is given
by
a; = Tayg_y +'R¢
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as the system equation, and
Xt = Z (2 73

as the observation equation, where oy = (Ct,w;)’, ¢ = (i, €)', Z = [, 1],

10 10
T = , R = . Additionally, I note that E(C:y') = Q =
0 d 01
1 0

2
0 of

Here, the vector of hyperparameters is given by v = (7,d, o%).
It is easily seen that ‘

t—-1
X, = (ZTYao + Y ZT'RGe—;

7=0
and because of the form of the matrices Z, T', R, and @, I obtain that

t—1
Xt = yom + d oy + Z(’Wt_j + djet—j)

=0
with atg = (cgy, @02)’. Hence, X; ~ N{us,02) where p; = vy + dlagy and
of =ty* + 0} Y74 (d?)’. T observe immediately that for +d and ¢ = 2m, for
some positive integer m, the corresponding densities are the same and ¥; =
(v,d) is different of ¥ = (7, —d). That is to say, there is not identifiability
of the X’s distribution for ¢t = 2m; therefore, the joint distribution of { X},
or equivalently the statistical model (4)-(5), is not identifiable.

The above finding suggests reparameterizing the model or to fix some
parameters, in order to get identifiability. If I use the second approach, a
possible parameter to be restricted is d; however, even if d is fixed but I

put ag; = 0, one finds that there is also no identifiability with respect to =
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because for £+, I can obtain the same density. Thinking in real applications
to the economy, I recommend fixing d and to restrict v to be nonnegative. It
is interesting to note that a negative value of «y provides the same information
that its additive inverse, about the coincident relationship between X; and
C.

To understand both the analytical and geometrical behavior of the unre-
stricted likelihood function for this model, I simulated it with the following
parameter values: v = 1, d = 0.7, and 0? = 1. As is well known, identifi-
ability problems can induce ill-behavior in the likelihood function, which is
reflected in the appearance of several local maxima or flat parts in its geo-
metrical representation, which is a hypersurface. The log-Gaussian likelihood

function for the model is given by

N N
I(y) = —0.5log27 — 0.5 Zlogft —05 Z’/tz/ft ’
t=1 t=1

with v, the one-step-ahead prediction error at t, and f; its mean squared
error. Its computation is carried out using the Kalman filter. Then, for
different fixed values of d in the interval (—1,1) and fixing 02 = 1, which
is not a loss in generality, I obtained the corresponding likelihood functions
for discrete values of «y in the interval (—10,10), which are chosen with a
step of 0.1. In Figure 1, I present the graphical results where the point
101 in the horizontal axis corresponds to v = 0, 102 to v = 0.1, 100 to
~v = —0.1, and so on. The curves presented there correspond to the following
values of d: -0.7, 0.3, 0.1, 0.6, and 0.8. As one can see, all the functions
attained their two local maximum values at the same values for «, which are

approximately 0.4 (or 105) and -0.4 (or 97). The same observation holds for



another values of d. Overall, the likelihood functions have two local maxima
that are attained at the same values of « irrespective of d. Obviously, one can
invert the situation and fixing -, let d vary in the interval (—1, 1) for finding
the likelihood function profiles; however, the results are similar. In Figure 2,
I present the 2-dimensional likelihood-function surface, keeping o2 constant,
with some contours (level curves), where one can see that there is an enlarged
hill in the d direction and above the line v = 1, approximately. But most
important, the contours indicate that there is not absolute maximum on the
parameter space. All of these geometrical observations are in accordance

with the theoretical findings above.
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Figure 1: Likelihood functions for « that correspond to different fixed values

of d

Simulations for this model with k > 2 were also conducted and the iden-

tifiability results were the same, i.e. the model is not identifiable. In order to
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Figure 2: Likelihood surface for the first simple model when ~ is restricted

to be nonnegative

take into account the autoregressive parameters of the latent process {C:},
I simulated again a univariate model with 8, = 0, v =1, k = 1, d = 0.7,
p=1 ¢ = 05, and 0? = 1. Fixing o2, the main parameter vector is
(7,d, 1), which I concentrate the analysis on. I plotted the three possible
likelihood surfaces, each one corresponding to a pair of parameters, with
their respective contours in Figures 3-5 and, as one can see there, there is

indication of no identifiability.
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Figure 3: Likelihood surface for the second model with d fixed.

The graphs signal the following important facts: (i) Fixing either d or
¢1, the likelihood surface tends to have large flat parts suggesting that the
likelihood function either does not have absolute maximum or does have but it
is very difficult to detect via a numerical optimization procedure. (ii) Fixing
=, the surface for d and ¢; is well-behaved in the sense the likelihood function
has only one maximum on the parameter space. These two facts indicate that
~ is highly responsible for the no identifiability of the model and that the
possibility of fixing the parameter ¢; instead of d for the estimation of the
model should be also considered. With respect to the potential problem with
~, one might interpret this fact saying that the likelihood function is not able
of extracting information about the parameter from the observed data.

Nieto (2002) has conducted more simulations with univariate and bivari-

ate models finding the same results as above, that is, the coincident-index
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Figure 4: Likelihood surface for the second model with ¢ fixed.

statistical model is not identifiable, where 4 becomes a troublesome para-
meter in this model. In the Appendix I include likelihood surfaces for a
bivariate model that illustrate even more this point. In general, and think-
ing in the practice, I suggest fixing the d parameters and restricting the 4’s to
be nonnegative. However, for future research, another alternatives for fixing
some model parameters must be considered, as indicated for the even partial
simulation study of Nieto (2002).
In practice, I recommend to use the following strategy:

STAGE 1. Find reasonable estimates of the ds autoregressive parameters, via
the fitting of a regression model with AR errors for each univariate equation
in expression (1), where one takes an appropriate preliminary estimate of the
process {C;} as the explanatory variable. Models adequacy may be checked

with AIC/BIC information criteria or usual residuals-based statistical tests.
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Figure 5: Likelihood surface for the second model with ~ fixed.

As the common autoregressive order for the u variables, one can take the

maximum of the marginal ones.

STAGE 2. In the estimation routine of the whole model, fix the d’s parame-

ters at the found values in STAGE 1 and restrict the 4’s to be nonnegative.
The previous findings about the model identifiability and the proposed

practical strategy are illustrated in a forthcoming paper about reestimating

a Colombian coincident index.

4 Conclusions

In this theoretical report, I have found that the state space model used by
Stock and Watson (1991), Kim and Nelson (1999), and Nieto and Melo (2001)

for designing a coincident index in levels for the so-called state of the econ-
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omy, is not identifiable. The latent process weights are highly responsible
for this identification problem. In order to obtain the model identifiability
property, I have sketched a practical approach in which the autoregressive
parameters of the intrinsic processes are estimated previously to the likeli-
hood function maximization and the latent process coeflicients are restricted
to be nonnegative.

A possible identification problem due to the simultaneous estimation of
the autoregressive parameters of the latent process and the weights of it in
the coincident equations should be investigated in the future. Simulation of
the models considered here indicate that whenever the latent process weights
are involved in the joint likelihood function, its surface tends to have large
flat regions, which makes very difficult the likelihood-function maximization
procedure for the model in levels. This simulation-based observation and the
empirical fact of no convergence of the maximization routine in a forthcoming

real application, favor the use of a transformed model as was done by Nieto

and Melo (2001) and Melo et al. (2001).
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APPENDIX

In this appendix I present the likelihood surfaces with their respective
contours corresponding to a bivariate model, i.e. n = 2, in which g, = 0,
(71,72) = (1,0.5), (d1,d2) = (0.7,0.4) and (¢?,02) = (1,0.5); p = 0 and
0 = 0. The likelihood function is I(71, 72, d1, d2) and there are 6 (the number
of combinations of 2 elements among 4) possible surfaces to be analyzed. In
Figures 6-11 I show the graphical results where one can see once more, the
same situation about so many local maxima in the likelihood function or an
absolute maximum that could be very hard to detect because of an almost

flat hypersurface in its neighborhood, when the parameters  are involved.

LogL.

Figure 6: Likelihood surface for the bivariate model with fixed +’s.
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Figure 8: Likelihood surface when 7, and d, are fixed.
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Figure 9: Likelihood surface for the bivariate model when -, and d; are fixed.

LogL

Figure 10: Likelihood surface when -, and d; are fixed.
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Figure 11: The surface for the bivariate model when d; and dy are fixed.
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