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Portfolio Optimization and Long-Term Dependence† 

Carlos León♠ 
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Alejandro Reveiz♦ 
The World Bank 

 
Abstract 

 
Whilst emphasis has been given to short-term dependence of financial returns, long-
term dependence remains overlooked. Despite financial literature provides evidence of 
long-term’s memory existence, serial-independence assumption prevails.    

This document’s long-term dependence assessment relies on rescaled range analysis 
(R/S), a popular and robust methodology designed for Geophysics but extensively used 
in financial literature. Results correspond to most of the previous evidence of significant 
long-term dependence, particularly for small and illiquid markets, where persistence is 
its most common kind. Persistence conveys that the range of possible future values of 
the variable will be wider than the range of purely random and independent variables. 

Ahead of R/S financial literature, authors estimate an adjusted Hurst exponent in order 
to properly estimate the covariance matrix at higher investment horizons, avoiding the 
traditional –independence reliant- square-root-of-time rule.  

Ignoring long-term dependence within the mean-variance portfolio optimization results 
in concealed risk taking; conversely, by adjusting for long-term dependence the weight 
of high (low) persistence risk factors decreases (increases) as the investment horizon 
widens. This alleviates some well-known shortcomings of conventional portfolio 
optimization for long-term investors (e.g. central banks, pension funds and sovereign 
wealth managers), such as excessive risk taking in long-term portfolios, extreme 
weights, home bias, and reluctance to hold foreign currency-denominated assets. 

Keywords: Portfolio optimization, Hurst exponent, long-term dependence, biased 
random walk, rescaled range analysis. 
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Introduction 
 

It is a widespread practice to use daily or monthly data to design portfolios with 
investment horizons equal or greater than a year. The computation of the annualized 
mean return is carried out via traditional interest rate compounding –an assumption free 
procedure-, whilst scaling volatility is commonly fulfilled by relying on the serial 
independence of returns’ assumption, which results in the celebrated square-root-of-
time rule. 

Despite it is a well-recognized fact that the serial independence assumption for assets’ 
returns is unrealistic at best, the convenience and robustness of the computation of the 
annual volatility for portfolio optimization based on the square-root-of-time rule 
remains largely uncontested.  

As expected, the greater the departure from the serial independence assumption, the 
larger the error resulting from this volatility scaling procedure. Based on a global set of 
risk factors, the authors compare a standard mean-variance portfolio optimization (e.g. 
square-root-of-time rule reliant) with an enhanced mean-variance method for avoiding 
the serial independence assumption. Differences between the resulting efficient frontiers 
are remarkable, and seem to increase as the investment horizon widens (Figure 1):   

Figure 1 
Efficient frontiers for the standard and the enhanced methods 

1-year 10-year 

Source: authors’ calculations. 
 

Because this type of error lurks beneath customary asset allocation procedures, 
including the prominent Black-Litterman (1992) model, the main objective of this paper 
is to challenge the square-root-of-time rule as a proper volatility scaling method within 
the mean-variance framework, and to present a robust alternative.   

In order to fulfill the stated objective this paper estimates financial assets’ long-run 
dynamic. The impact of long-term serial dependence in assets’ returns is assessed for a 
wide set of markets and instruments, with a sample which covers the most recent market 
turmoil. Such estimation relies on a revised and adjusted version of the classic rescaled 
range analysis methodology (R/S) first introduced by Hurst (1951), and subsequently 
enhanced by Mandelbrot and Wallis (1969a and 1969b).  
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Similar to Hurst’s results in Geophysics and to financial literature (Malevergne and 
Sornette, 2006; Los, 2005; Daníelsson and Zigrand, 2005), results confirm that 
numerous individual risk factors exhibit significant long-term dependence, thus 
invalidating the square-root-of-time rule. Interestingly, most previous findings related to 
long-term dependence in financial time-series are still supported, even after the most 
recent period of market crisis. 

Results also demonstrate some major asset allocation issues could be explained to some 
extent by the inability of the square-root-of-time rule to properly scale up volatility in 
presence of serial long-term dependence. Some of these issues are (i) the excessive risk 
taking in long-term portfolios (Valdés, 2010; Reveiz et al. 2010; Pastor and Stambaugh, 
2009; Schotman et al. 2008); (ii) the tendency to hold a disproportionate level of 
investments within the domestic market –home bias- (Solnik, 2003; Winkelmann, 
2003b); (iii) the reluctance to hold foreign currency-denominated assets (Lane and 
Shambaugh, 2007; Davis, 2005); and (iv) the presence of extreme portfolio weights or 
“corner solutions” (Zimmermann et al. 2003; He and Litterman, 1999).  

This paper consists of six chapters; this introduction is the first one. The second chapter 
presents a brief examination of the square-root-of-time rule and its use for scaling high-
frequency volatility (e.g. daily) to low-frequency volatility (e.g. annual). The third 
describes and develops the classic rescaled range analysis (R/S) methodology for 
detecting and assessing the presence of long-term serial dependence of returns. The 
fourth chapter exhibits the results of applying classic and adjusted versions of R/S to 
selected risk factors. The fifth analyzes the consequences of the results for portfolio 
optimization. Finally, the last chapter highlights and discusses some relevant remarks.     
 

 

1. The square-root-of-time rule 

The square-root-of-time rule consists of multiplying the standard deviation calculated 
from a d-frequency (e.g. daily) time-series by the square-root of n, where n is the 
number of d units to scale standard deviation up. For example, if σd is the standard 
deviation of a d-frequency time-series, to scale volatility to an a-frequency, where 
ܽ ൌ ݀݊, σd  should be multiplied by the square-root of n, as follows: 

௔ߪ ൌ ௗ௡ߪ ൌ ௗߪ √݊మ ൌ ௗ݊଴.ହ [F1]ߪ

The value of this rule is evident for market’s practitioners: as acknowledged by Dowd et 
al. (2001), obtaining time-series suitable –long enough- to make reliable volatility 
estimations for monthly or annual frequencies is rather difficult. Besides, even if such 
time-series do exist, questions about the relevance of far-in-the-past data may arise. 
 

Perhaps the most celebrated application of the square-root-of-time rule has to do with 
Value at Risk (VaR) estimation. According to the technical standards originally 
established by the Basel Committee on Banking Supervision (BIS, 1995), the VaR must 
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be calculated for at least a ten-day holding period. VaR estimations could be based on 
shorter holding periods (e.g. using daily time-series), but the ten-day holding period 
VaR should be attained by means of scaling up to ten days by the square-root-of-time.1  

Discussing Bachelier’s (1900) contribution to the construction of the random-walk or 
Brownian motion model, Mandelbrot (1963) described it as follows: if Z(t) is the price 
of a stock at the end of time period t, successive differences of the form Z(t+T) - Z(t) are 
(i) independent, (ii) Gaussian or normally distributed, (iii) random variables (iv) with 
zero mean and (v) variance proportional to the differencing interval T. 

These assumptions have been notably challenged by mere observation of financial 
markets, and rejected using traditional significance tests. Nevertheless, methodologies 
and practices based on the Brownian motion still endure; one of such lasting practices is 
volatility scaling via the square-root-of-time rule, which is the most important 
prediction of the Brownian motion model (Sornette, 2003). 

The assumption underneath the square-root-of-time rule is independence. Under this 
assumption past behavior of the variable is irrelevant. This is also known as the weak 
form of the Efficient Market Hypothesis (EMH), and it is the core hypothesis of the 
martingales model for asset pricing, which states that the current price is the best 
forecast for future price (Campbell et al., 1997).  

Under the independence assumption the probability distribution of changes in the same 
variable for two or more periods is the sum of the probability distribution; when two 
independent normal distributions are added, the result is a normal distribution in which 
the mean is the sum of means and the variance is the sum of variances (Hull, 2003). 

Accordingly, if the probability distribution of changes of an independent variable (Ω) 
has an A-B range (Figure 2, left panel), the resulting range at the end of two periods will 
be proportional to twice A-B, and for three periods it will be proportional to three times 
A-B; it is irrelevant whether the probability distribution (Ω) is Gaussian or not. 

If the distribution is Gaussian the A-B range can be conveniently characterized by the 
variance. Hence, if the distribution can be defined as ࣨ~ሺ0,1ሻ, where N stands for 
normally distributed, zero is the mean and 1 the variance, after three periods the 
distribution of the possible values of the –independent- variable corresponds to 
ࣨ~ሺ0,1 ൅ 1 ൅ 1ሻ or ࣨ~ሺ0,3ሻ.  

Alternatively, A-B range can be characterized by a different dispersion metric: standard 
deviation. However, because standard deviation corresponds to the square-root of 
variance, it’s not additive; therefore, the three-period distribution of possible values of 
the –independent- variable corresponds to ࣨ~ሺ0, √1 ൅ 1 ൅ 1మ ሻ or ࣨ~ሺ0, √3మ ሻ. This is 
the origin of the square-root-of-time-rule. 

 

                                                 
1 Technical caveats to the usage of the square-root-of-time rule were recently introduced (BIS, 2009). 
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Figure 2 
Independence and the square-root-of-time rule 

 
Independent Process Process with memory 

 
Source: authors’ design. 

 
In absence of independence this rule is no longer valid. As the right panel of Figure 2 
reveals, let a return above the mean lead to a different (Φ) more disperse distribution  
(C-D>A-B) –which is an example of dependence-, then it is impossible to affirm neither 
that the resulting range at the end of two periods is going to be proportional to twice A-
B, nor twice C-D. This impossibility applies even if the distributions (Φ and Ω) are 
strictly Gaussian, and it would cause any standard rule to scale range, variance or 
standard deviation to falter. 

Moreover, the presence of long-term dependence not only invalidates any use of the 
square-root-of-time rule, but contributes to explain the slow convergence of the 
distribution of financial assets’ returns towards normality, even for low-frequency (e.g. 
monthly, quarterly) data (Malevergne and Sornette, 2006). 

Despite asset returns’ independence rests as one of the core foundations in Economics 
and Finance since Bachelier, contradictory evidence also dates back to the dawn of the 
20th century (Mitchell, 1927; Mills, 1927; Working, 1931; Cowles and Jones, 1937).  
 
Nevertheless, it was complex natural phenomena which forced physicists to deal with 
the absence of independence. It was Geophysics, not Economics nor Finance, the source 
of methodologies to identify and measure long-term dependence.   
 

2. Rescaled range analysis (R/S) 

Long-term dependence detection and assessment for time-series began with Hydrology 
(Mandelbrot and Wallis, 1969a), when the British physicist H.E. Hurst (1880–1978) 
was appointed to design a water reservoir on the Nile River. The first problem Hurst 
had to deal with was to determine the optimal storage capacity of the reservoir; that is, 
restricted to a budgetary constraint, design a dam high enough to allow for fluctuations 
in the water supply whilst maintaining a constant flow of water below the dam.  

Deciding on the optimal storage capacity depended on the inflows of the river, which 
were customarily assumed to be random and independent by hydraulic engineers at that 
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time. However, when checking Nile’s historical records (622 B.C. - 1469 B.C.) Hurst 
discovered that flows couldn’t be described as random and independent: data exhibited 
persistence, where years of high (low) discharges were followed by years of high 
dischargers (low), thus describing cycles but without an obvious periodicity.  

Hurst concluded that (i) evidence contradicted the long-established independence 
assumption and (ii) that the absence of significant autocorrelation proved standard 
econometrics tests to be ineffective (Peters, 1994). Thus, since absence of independence 
vindicated caring about the size and sequence of flows, Hurst developed a methodology 
capable of capturing and assessing the type of dependence he had documented.  

Hurst’s methodological development was based on Einstein’s (1905) work about 
particles’ movement, which Scottish botanist Robert Brown (1828 and 1829) already 
depicted as inexplicable, irregular and independent. Einstein originally formulated that 
the distance or average displacement (R) covered by a particle suspended in a fluid per 
unit of time (n) followed ܴ ൌ ݊଴.ହ; this is analogous to the square-root-of-time rule.  

Unlike Brown and Einstein, Hurst’s primary objective was a broad formulae, capable of 
describing the distance covered by any random variable with respect to time. Hurst 
found his observations of several time-series were well represented by ܴ~ܿ ൈ ݊ு, 
where H corresponds to the way that distance (R) behaves with respect to time. 

Hurst defined that the metric for the distance covered per unit of time or sample (n) 
would be given by the range Rn [F2], where x1,x2,x3…xn  correspond to the change of the 
random variable within the sample, and ݔҧ௡ is the average of these changes. Range Rn is 
standardized by the standard deviation of the sample for that period (Sn), which results 
in the rescaled range for the n sample (R/S)n [F2].   

ሺܴ ܵ⁄ ሻ௡ ൌ ܴ௡
ܵ௡

ൗ ൌ
ቂ max

ଵஸ௞ஸ௡
൫∑ ൫ݔ௝ െ ҧ௡൯௞ݔ

௝ୀଵ ൯ െ min
ଵஸ௞ஸ௡

൫∑ ൫ݔ௝ െ ҧ௡൯௞ݔ
௝ୀଵ ൯ቃ

ܵ௡
 [F2]

Hurst found out that the behavior of this rescaled range [F2] adequately fitted the 
dynamic of numerous time-series from natural phenomena, where the adjustment could 
be represented as follows [F3]: 

ሺܴ ܵ⁄ ሻ௡~ܿ ൈ ݊ு 
 

[F3]

Paraphrasing Peters (1992), Hurst’s novel methodology measures the cumulative 
deviation from the mean for various periods of time and examines how the range of this 
deviation scales over time. ܪ෡, the estimated exponent that measures the way distance 
(R) behaves with respect to time, takes values within the 0 and 1 interval (0 < ܪ෡ ≤ 1), 
where ܪ෡=0.5 corresponds to Einstein’s and Brown’s independency case. 

Mandelbrot and Wallis (1969a and 1969b) proposed to plot Hurst’s function [F3] for 
several sample sizes (n) in a double logarithmic scale, which served to obtain ܪ෡ through 
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a least squares regression. ܪ෡ would be the slope of the estimated equation [F4]; this 
procedure is known as the rescaled range analysis (R/S). 
 

ሺܴ݃݋ܮ ܵ⁄ ሻ௡ ൌ ሺܿሻ݃݋ܮ ൅ ሺ݊ሻ݃݋ܮܪ  [F4]

According to Mandelbrot (1965) the application of R/S to random series with stationary 
and independent increases, such as those characterized by Brown (1828 and 1829) and 
Einstein (1905), results in ܪ෡=0.5, even if the distribution of the stochastic process isn’t 
Gaussian, case in which ܪ෡ asymptotically converges to 0.5 (ܪ෡ ≈ 0.5).  

As said by Sun et al. (2007), in the ܪ෡=0.5 and ܪ෡ ≈ 0.5 cases the process has no memory 
–is independent-, hence next period’s expected result has the same probability of being 
lower or higher than the current result. Applied to financial time-series this is akin to 
assuming that the process followed by assets’ returns is similar to coin tossing, where 
the probability of heads (rise in the price) or tails (fall in the price) is the same (½), and 
is independent of every other toss; this is precisely the theoretical base of the Capital 
Asset Pricing Model (CAPM), the Arbitrage Pricing Theory (APT), the Black & 
Scholes model and the Modern Portfolio Theory (MPT). 

When ܪ෡ takes values between 0.5 and 1 (0.5 < ܪ෡ ≤ 1) evidence suggests a persistent 
behavior, therefore one should expect the result in the next period to be similar to the 
current one (Sun et al., 2007). According to Menkens (2007) this means that increments 
are positively correlated: if an increment is positive, succeeding increments are most 
likely to be positive than negative. In other words, each event has influence on future 
events; therefore there is dependence or memory in the process.  

As ܪ෡ becomes closer to one (1) the range of possible future values of the variable will 
be wider than the range of purely random variables. Peters (1996) argues that the 
presence of persistency is a signal that today’s behavior doesn’t influence near future 
only, but distant future as well. 

On the other hand, when ܪ෡ takes values below 0.5 (0 ≤ ܪ෡ < 0.5) there is a signal that 
suggests an antipersistent behavior of the variable. This means, as said by Sun et al. 
(2007), that a positive (negative) return is more likely followed by negative (positive) 
ones; hence, as stated by Mandelbrot and Wallis (1969a), this behavior causes the 
values of the variable to tend to compensate with each other, avoiding time-series’ 
overshooting. Applied to financial markets series, Menkens (2007) affirms that this kind 
of continuously compensating behavior would suggest a constant overreaction of the 
market, one that would drive it to a permanent adjustment process. Similarly, Peters 
(1996) links this behavior to the well-known “mean-reversion” process. 

Hurst’s methodology and results2 were gathered, corrected and reinterpreted by 
Mandelbrot (1972) and Mandelbrot and Wallis (1969a and 1969b). Based on random 

                                                 
2 Hurst (1956) studied 76 natural phenomena. ܪ෡ was significantly different from 0.5, and was close to 
0.73 (σ = 0.092). Hurst found no evidence of significant autocorrelation in the first lags, which led him to 
reject short-term dependence as the source of this phenomenon; neither could he find a slow and gradual 
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simulation models they verified that (i) Hurst’s conclusions were correct, but 
calculations were imprecise; (ii) their corrected version of R/S is robust to detect and 
measure dependence, even in presence of significant excess skewness or kurtosis3; (iii) 
their corrected version of R/S is asymptotically robust to short-term dependency (e.g. 
autoregressive and moving average processes); (iv) asymptotically ܪ෡=0.5 for 
independent processes, even in absence of Gaussian processes; and (v) in contrast to 
other methodologies, R/S can detect non periodic cycles. 

Shortcomings of Mandelbrot’s (1972) and Mandelbrot and Wallis’ (1969a and 1969b) 
developments regarding the presence of significant long-term dependence in financial 
time-series are depicted by Lo (1991). He introduced modified rescaled range 
methodology (mR/S) as an effort to establish whether R/S results are due to the presence 
of genuine long-term dependence, or they are due to some sort of short-term memory.  

Despite considering comparative results of both R/S and mR/S as inconclusive, Los 
(2003) states that evidence documented by Peters (1994) shifts the balance of proof in 
direction of the existence of the long-term dependence in financial assets’ time-series. 
Peters’ (1994) works on long-term dependence in capital markets discarded 
autoregressive processes (AR), moving average (MA) and autoregressive moving 
average (ARMA) as sources of the persistence effect or long-term memory that is 
captured by the R/S, whilst GARCH processes showed a marginal persistence effect.4 

Although literature about short-term dependence in assets’ returns is abundant, long-
term’s is rather scarce, whereas R/S is a popular and robust methodology. As exhibited 
in Table 1, evidence on R/S application to currencies, stock indexes, fixed income 
securities and commodities supports the long-term dependence hypothesis, as well as 
Peters’ (1996) statement regarding the difficulty to find antipersistent financial time-
series.  

Evidence of significant antipersistence has been documented for energy prices, which 
Weron and Przybylowicz (2000) explain as a consequence of this asset’s particularities 
(e.g. market regulation, storage problems, transmission, distribution), and for currencies 
floating within a currency band that introduces non-linear features to foreign exchange 
trading (Reveiz, 2002).  

Consequently, Peters (1996 and 1989) concluded that assets’ returns don’t follow a pure 
random walk, but exhibit some degree of persistence (0,5 < ܪ෡ ≤ 1); Peters named this 
type of tainted random walk as “biased random walk”. When assets’ returns follow a 
biased random walk they trend in one direction until some exogenous event occurs to 
change their bias. The presence of persistency, according to Peters, is evidence that new 

                                                                                                                                               
decay with increasing lags, which supported his rejection of long-term dependence in the traditional sense 
of Campbell et al. (1997). 
3 Mandelbrot and Wallis (1969a) were the first to recognize R/S as non-parametric, even in presence of 
extreme skewness or with infinite variance. León and Vivas (2010), Martin et al. (2003), Willinger et al. 
(1999) and Peters (1996 and 1994) verified such statement.  
4 Moreover, since the purpose of this paper is not to establish the source of dependence, either short-term 
or long-term, but to detect and measure its impact in financial assets’ returns long-run dynamic, Lo’s 
(1991) criticism is rather irrelevant. 
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events aren’t immediately reflected in prices, but are manifested as an enduring bias on 
returns; this contradicts the EMH.  

Table 1 
Literature on (R/S)-estimated Hurst exponent 

 
Source: authors’ design. 

 
Some explanations for financial assets’ return persistence are found in human behavior, 
since the latter contradicts rationality assumption in several ways, for example: (i) 
investors’ choices are not independent, and they are characterized by non-linear and 
imitative behavior (LeBaron and Yamamoto, 2007; Sornette, 2003); (ii) investors resist 
to change their perception until a new credible trend is established (Singh and Dey, 
2002; Peters, 1996), and (iii) investors don’t react to new information in a continuous 
manner, but rather in a discrete and cumulative way (Singh and Dey, 2002).  

Author Market Time-Series Period Frequency H
Peters (1992) S&P500  - USA 01/1950 – 06/1988 Monthly 0,780 N/A

S&P500  - USA 01/07/1962 - 31/12/1988 Daily 0,531 1,380 ‡ 

S&P500  - USA 01/1950 - 07/1988 Monthly 0,622 1,490 ‡ 

IPC - Mexico 04/01/1999 – 20/02/2006 0,557 0,990 §

DJIA - USA 19/06/1999 – 22/05/2006 0,504 0,988 §

IPC - Mexico 04/01/1988 – 11/09/2001 0,584 0,995 §

IPC - Mexico 01/1983 – 05/2001 0,713 0,976 §

DJIA - USA 0,658 0,994 §

S&P500  - USA 0,686 0,993 §

Qian and R. (2004) DJIA - USA 11/18/1969 – 12/06/1973 Daily 0,650 N/A
S&P500 - USA 0,525 1,400 ‡ 

S&PTSX - CANADA 0,541 1,465 ‡ 

CAC40  - France 0,537 2,088 ‡ 

DAX100  - Germany 0,541 1,644 ‡ 

MIB - Italy 0,505 1,644 ‡ 

NIKKEI225 - Japan 0,551 2,635 ‡ 

FTSE 100 - England 0,511 2,420 ‡ 

NIKKEI225 - JAPAN 0,547 0,038 †

MERVAL - Argentina 0,584 0,040 †

BOVESPA - Brazil 0,612 0,040 †

SENSEX - India 0,591 0,040 †

KOSPY - Korea 0,551 0,039 †

IPSA - Chile 0,594 0,040 †

IPC - Mexico 0,557 0,039 †

IGBVL - Peru 0,656 0,042 †

ISE - Turkey 0,538 0,036 †

TA-100 - Israel 0,584 0,041 †

FTSE100 - England 0,521 0,039 †

S&P500  - USA 0,519 0,037 †

PX50 - Czech Republic 07/09/1993 – 03/07/2004 0,645 0,018 †

BUX  - Hungary 02/01/1991 – 30/06/2004 0,626 0,015 †

WSE - Poland 18/03/1994 – 03/08/2004 0,569 0,018 †

RTS - Russia 01/09/1995 – 05/08/2004 0,648 0,020 †

SAX - Slovakia 03/07/1995 – 30/07/2004 0,525 0,020 †

SBI - Slovenia 07/01/1993 – 16/07/2004 0,656 0,017 †

0,571 2,027 ¤ 

Monthly 0,622 1,850 ¤ 

Alptekin (2008) Gold - Istambul Gold Exchange 01/01/2003 – 17/03/2008 0,600 2,100 ‡ 

Corn Futures - CBOT 0,760 N/A
Oats Futures - CBOT 0,700 N/A
Soybean Futures - CBOT 0,740 N/A
Soybean oil futures - CBOT 0,800 N/A
Wheat futures - CBOT 0,650 N/A

Erzgraber et al. (2008) Energy (NordPool) - Norway 01/01/1999 - 26/01/2007 0,270 N/A
Energy (CalPX) California 01/03/1998 - 31/01/2000 Hourly 0,439 N/A
Energy (SWEP) - Switzerland 11/03/1998 -31/03/2000 0,529 N/A
DMK/USD 0,623 2,248 ¤ 

CHF/USD 0,610 2,053 ¤ 

JPY/USD 0,609 1,954 ¤ 

GBP/USD 0,590 1,487 ¤ 

MXN/USD 02/01/1995 – 14/02/2006 0,526 0,994 §

USD/EUR  19/06/1999 – 22/05/2006 0,559 0,995 §

Da Silva et al. (2007) BRL/USD 02/01/1995 – 31/08/2006 0,630 3,260 ¤ 

DEM/USD  0,580 0,026 †

3 months future DEM/USD  0,571 0,026 †

FRF/USD  0,576 0,026 †

GBP/USD 0,567 0,026 †

ITL/USD 0,598 0,026 †

Peters (1992) Fix.Income 30 years Treasuries - USA 01/1950 – 06/1988 Monthly 0,670 N/A

Souza et al.  (2008) 27/05/1986 – 31/12/1998

§ Corresponds to the R 2  of the regression [F4]
† Corresponds to the standard error of estimated H

‡ Corresponds to Lo's Vq statistic (1991)

¤ Corresponds to the t statistic by Couillard and Davison (2005)

Australian Stock exchange 04/1876 – 03/1996
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Other explanations for financial assets’ return persistence have to do with the 
importance of economic fundamentals (Nawrocki, 1995; Lo, 1991; Peters, 1989), and 
the use of privileged information (Menkens, 2007). Alternatively, some authors 
(Bouchaud et al., 2008; Lillo and Farmer, 2004), based on the persistence of the number 
and volume of buying and selling orders in transactional systems, conclude that 
markets’ liquidity make instantaneous trading impossible, leading to transactions’ 
splitting, and decisions’ clustering, resulting in market prices which don’t fully reflect 
information immediately, but incrementally.  

 

3. Estimated Hurst exponent (ࡴ෡ ) for major risk factors 

Estimating the Hurst exponent (ܪ෡) requires the implementation of the algorithm 
described in the Appendix, and the design of significance tests for evaluating the null 
hypothesis of independence.  

a. Confidence intervals and significance tests 

One of the main difficulties of R/S methodology is the selection of an ad-hoc optimal 
size of periods (n) to calculate (R/S)n. In the literature there is consensus about R/S being 
not reliable for reduced periods because estimations may become unstable and biased 
(Cannon et al., 1997; Peters, 1994; Ambrose et al., 1993). However, there is no 
consensus about an optimal minimum size of periods (nmin).5 

The same issue arises with the choice of optimal maximum period size (nmax). Cannon et 
al. (1997) and Peters (1996) recognize that the stability of ܪ෡ diminishes when using 
extended periods. Therefore, Cannon et al. advise to dismiss the use of data windows 
where estimations are made on a few segments of the time-series. 

Given the absence of consensus on the optimal period size, all calculations were made 
using a minimum size of 32 observations (nmin ≥ 25). This choice not only recognizes the 
intricacy of finding extended time-series (Peters, 1994), but also results in reduced 
standard errors of the estimators in the sense of Cannon et al. (1997), and guarantees 
that the effect of conventional short-term serial dependence (e.g. autocorrelation) for a 
daily-frequency series is minimized (Nawrocki, 1995).  

The maximum period size constrain (nmax) consists of restricting time-series to be 
divided at least in ten contiguous non-overlapping segments; in this way estimations 
based on a narrow number of samples and unstable estimators are avoided.  

                                                 
5 Cannon et al. (1997) estimate optimal minimum size of periods to be nmin ≥ 28 (≥ 256 observations) to 
achieve standard deviations below 0.05; Mandelbrot and Wallis (1969a) use 20 observations; Wallis and 
Matalas (1970) point out that the window must have at least 50 observations, unless series are of 
considerable length; Peters (1994) acknowledges that financial series are not long enough to discard 
reduced windows, and suggests at least 10 observations; Nawrocki (1995) argues that minimum number 
of observations should be large enough to minimize the effect of short-term dependence. 
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Concerning significance tests for ܪ෡, two well-documented issues have to be taken into 
account (León and Vivas, 2010; Ellis, 2007; Couillard and Davison, 2005; Peters, 
1994). First, there is a positive bias in the estimation –overestimation- of H resulting 
from finite time-series and minimum size of periods below approximately 1.000 
observations. Second, ܪ෡ for normal and non-normal distributed random variables 
distribute like a normal.       

Regarding the first issue, the estimation bias resulting in the overestimation of ܪ෡ can be 
conveniently assessed. Several assessment methods for estimating such bias have been 
documented, but this work focuses on the single most well-known. First proposed by 
Anis and Lloyd (1976), subsequently revised by Peters (1994), and recently verified and 
applied by León and Vivas (2010), Ellis (2007) and Couillard and Davison (2005), the 
chosen method consists of a functional approximation for estimating the expected value 
of (R/S)n when the random variable is independent and of finite length. This method 
yields the expected Hurst exponent corresponding to an independent random variable, 
which will be noted as ܪሶ , and is based on the following calculation of the expected 
value of (R/S)n:  
 

ሺܴܧ ܵ⁄ ሻ௡ ൌ
݊ െ ଵ

ଶ
݊

1
ඥ݊ߨ 2⁄

෍ ඨ݊ െ ݅
݅

௡ିଵ

௜ୀଵ

 [F5]

 
Any divergence of ܪ෡ from ܪሶ  would signal the presence of long-term memory in time-
series. However, as customary in statistical inference, it is critical to develop 
appropriate statistical tests to distinguish between significant and non-significant 
deviations from long-term independence null hypothesis.  

The significance test used is similar to those proposed by Ellis (2007) and Couillard and 
Davison (2005). Because ܪ෡’s distribution is established to be normal, even for random 
variables that are not, a conventional t-statistic test may be implemented. Let ܪ෡ be the 
R/S’s estimated value of the Hurst exponent, ̂ߤሺܪሶ ሻ and ߪොሺܪሶ ሻ the expected value and 
standard deviation of the expected Hurst exponent corresponding to an independent 
random variable (ܪሶ ), the significance test would be as follows:6 
 

ݐ ൌ
෡ܪ െ ሶܪሺߤ̂ ሻ

ሶܪොሺߪ ሻ
 [F6]

 
As usual, if t is higher than ±1.96 it is possible to reject the null hypothesis of long-term 
independence with a 95% confidence level. The sign of t reveals the type of 
dependence: if it is positive (negative) there is evidence of persistence (antipersistence). 

For convenience, given that ܪሶ  is the estimated Hurst exponent for random, independent 
and finite time-series of length N, the spread between ܪሶ  and 0.5 corresponds to the bias 

                                                 
6 Let N be the length of time-series, due to ܪ෡ distributing like a normal the ordinary choice for ߪොሺܪሶ ሻ is 
ൎ 1 ܰଵ ଶ⁄⁄  as in Peters (1994). According to Couillard and Davison (2005) this choice corresponds to 
infinite length time-series, and yields easy and frequent rejections of the independence null hypothesis. 
They propose ൎ 1 ݁ܰଵ ଷ⁄⁄ , which is authors’ choice.  
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estimation resulting from using finite time-series and the choice of the size of periods 
(n). Subtracting such spread from the Hurst exponent estimated using R/S, namely ܪ෡, 
results in an adjusted estimated Hurst exponent, which will be noted as ܪෙ: 

ෙܪ ൌ ෡ܪ െ ൫ܪሶ െ 0.5൯ [F7]

This adjusted estimated Hurst exponent (ܪෙ) is essential since it allows a practical and 
unbiased volatility scaling as will be presented in the following sections. 

b. Estimated values of Hurst exponent (ࡴ෡ )  

Figure 3 exhibits the Walmart and JP Morgan’s price-series from January 1st 2000 to 
June 25th 2010.  

Figure 3 
Daily prices for Walmart and JP Morgan 

 
Source: authors’ calculations. 

 
Walmart’s exhibits a narrower range in which prices fluctuate, where returns appear to 
compensate each other, whilst JP Morgan’s appear to persist overtime; since both share 
the same dollar-scale, it is somewhat intuitive that JP Morgan’s time-series are more 
persistent than Walmart’s. Figure 4 exhibits the graphical result of applying R/S.     
 

Figure 4 
Walmart and JP Morgan (adjusted and unadjusted Hurst exponent) 

Walmart (WMT) JP Morgan (JPM) 

Source: authors’ calculations. 
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Walmart exhibits an estimated Hurst exponent slightly above 0.5 (ܪ෡ௐெ் ൌ 0.504), 
which would be a signal of non-significant persistence, whilst JP Morgan’s ܪ෡ clearly 
diverges from 0.5 (ܪ෡௃௉ெ ൌ 0.637). Nevertheless, after acknowledging the positive 
estimation bias, adjusted estimated Hurst exponent reveals that Walmart’s time-series is 
in fact antipersistent (ܪෙௐெ் ൌ 0.422), whereas JP Morgan’s remains as being persistent 
ෙ௃௉ெܪ) ൌ 0.554). 
 
Figure 5 exhibits the adjusted estimated Hurst exponent (ܪෙ) for individual risk factors 
(small dots) pertaining to distinct markets (e.g. developed and emerging) and diverse 
instruments (fixed income, equity and commodities). As before, if the adjusted 
estimated Hurst exponent (ܪෙ) is greater (lower) than 0.5 there exists evidence of 
persistence (antipersistence), where the area between the vertical lines correspond to the 
95% confidence interval in which the independence hull hypothesis can’t be rejected.  
 
Individual risk factors across markets and instruments display different degrees of 
dependence, where persistence is typical of emerging markets’ fixed income 
instruments (FI.EM) and of less-developed equity markets (e.g. Colombia, Turkey and 
Peru).  Developed equity markets (e.g. US and EUR) and liquid emerging markets (e.g. 
Brazil, Mexico) show less incidence of persistent individual risk factors, even with 
several cases of antipersistence. These findings support Cajueiro and Tabak’s (2008) 
comparison between developed and emerging markets.  

Figure 5 
Adjusted Estimated Hurst Exponent (ܪෙ)7 

 
Source: authors’ calculations. 

 
The results also correspond to the findings of Weron and Przybylowicz (2000) in 
relation with significant antipersistence of energy prices, but contradict Peters’ (1996) 
affirmation about the difficulty to find financial time-series with antipersistent returns.   

                                                 
7 The markets included are the following: FI.EM. – Emerging Markets’ Fixed Income (EMBI Global of 
Brazil, Mexico, Colombia, Peru, South Africa, Turkey and Chile); FI.DEVELOPED – Developed 
Markets’ Fixed Income (as in Table 2); US.ENERGY (Off-peak day ahead electricity for several US 
regions); COMMODITIES (oil, gold, copper, wheat, corn, cotton, aluminum, sugar, coffee, cocoa, rice, 
soy); and a market-capitalization representative set of securities from the equity markets of the United 
States (US), Europe (EUR), Brazil (BRA), Mexico (MEX), Colombia (COL), Peru (PER), Turkey (TUR), 
Chile (CHI), Israel (ISR), Korea (KOR) and South Africa (SAF). All estimations were based on January 
1st 2000-June 25th 2010 time-series, except US.ENERGY (January 1st 2002- June 25th 2010). 
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Regarding persistence at the portfolio level, Figure 5 displays the adjusted estimated 
Hurst exponent (ܪෙ) for an equally weighted portfolio of the individual risk factors 
(filled circles) and the equally weighted average of the individual risk factor’s adjusted 
estimated Hurst exponent (empty circles). It is remarkable that the portfolios’ adjusted 
estimated Hurst exponent tends to be higher than the weighted average of the individual 
exponents, which would indicate that diversification effect does not apply to serial 
dependence as it does to variance or standard deviation.  

It is also noteworthy that for emerging fixed income and equity markets the portfolios’ 
adjusted estimated Hurst exponent (ܪෙ) rests significantly higher than the weighted 
average of the individual exponents. Because aggregating risk factors should result in 
specific or idiosyncratic risk diversification, this could indicate that the remaining 
systemic risk is relatively more important for emerging than for developed markets; this 
could be the result of poor diversification opportunities within a small and illiquid 
market, or of the generalized impact of systemic shocks and the corresponding changes 
in risk appetite and liquidity in those markets.  

 

4. Portfolio optimization under long-term dependence 

The most far-reaching consequences of long-term dependence or memory in financial 
assets’ returns were pointed out by Lo (1991). He recognized that the long-term 
dependence conveys the invalidity of modern Finance’s milestones, where the most 
hard-hit would be the optimal consumption/savings and portfolio decisions, as well as 
the pricing of derivatives based on martingale methods.  

a. Volatility scaling, investment decisions and portfolio optimization 

Conventional portfolio optimization uses high-frequency data and customary 
procedures for return and volatility scaling in order to obtain allocations for low-
frequency horizons.  

Let ̂ߤௗ and ߪොௗ be the estimated high-frequency (e.g daily) continuously compounded 
expected return and standard deviation, ̂ߤ௔ and ߪො௔ the estimated low-frequency (e.g. 
annual) continuously compounded expected return and standard deviation, and p the 
number of days-in-a-year convention. The standard procedure for asset allocation 
typically involves the following expected return [F8] and volatility escalation [F9]: 

௔ߤ̂ ൌ ෍ ௗሺ௧ሻߤ̂

௣

௧ୀଵ

 [F8]

  
ො௔ߪ ൌ ଴.ହ [F9]݌ොௗߪ
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The standard procedure to scale returns up (e.g. from daily to annual) is assumption-
free, and consists of interest compounding calculations. However, conventional 
volatility scaling inexorably involves the serial independence assumption.  

If assets’ returns exhibit no serial dependence using the square-root-of-time rule is 
adequate. Nevertheless, in absence of independence some assets’ volatility may increase 
with time horizon, while others’ may decrease; even if all assets’ volatility increases, it 
may not increase at the same pace. Thus, Holton (1992) highlights the importance of 
considering volatility and investment horizon as risk’s first and second dimensions. 

In presence of long-term dependence scaling returns up as in [F8] remains unchanged. 
But for estimating volatility the scaling procedure should be generalized as follows:  

ො௔ߪ ൌ ுෙ݌ොௗߪ  [F10]

Additionally, because mean-variance portfolio optimization involves working with the 
covariance matrix, the latter should be scaled up properly. Under the random-walk 
assumption low-frequency covariance between two assets, i and j, corresponds to the 
arithmetic sum of high-frequency covariances (Winkelmann, 2003); thus the relative 
variance between assets remain unrelated to the investment horizon. 

Nevertheless, in presence of dependence, either ܪෙ௜ ് 0.5 or ܪෙ௝ ് 0.5, as an extension 
to the volatility scaling procedure [F10], the d-frequency covariance between assets i 
and j (ߪොሼሺ௜,௝ሻ,ௗሽ

ଶ ) should be scaled up to the a-frequency covariance (ߪොሼሺ௜,௝ሻ,௔ሽ
ଶ ) as in 

Greene and Fielitz (1979) [F11]; this recognizes that memory in financial time-series 
cause relative variance between assets to vary with the investment horizon. 

ොሼሺ௜,௝ሻ,௔ሽߪ
ଶ ൌ ൫݌ுෙ೔ାுෙೕ൯൫ߪොሼሺ௜,௝ሻ,ௗሽ

ଶ ൯ [F11]

b. Long-term dependence inclusive portfolio optimization 

In order to illustrate the impact of including long-term dependence adjustments to the 
covariance matrix scaling for asset allocation, a long-term portfolio optimization 
exercise is implemented based on the two methods for scaling volatility: (i) the square-
root-of-time rule [F9] conventional method, and (ii) the method proposed by the authors 
[F10 and F11].     

The square-root-of-time rule based method begins by estimating the first two moments 
of the distribution of the risk factors and the covariance matrix from daily data. 
Afterwards a traditional mean-variance optimization is employed, and the expected 
return and standard deviation of the resulting portfolios are customarily scaled up; since 
the square-root-of-time rule assumes volatilities’ time-consistency the portfolio weights 
remain the same regardless of the investment horizon.  
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The second method also begins by estimating the first two moments of the distribution 
and the covariance matrix from daily data. Next, because risk factors’ dependence 
causes portfolio weights to vary according to the investment horizon, the standard 
deviation and covariance matrix scaling for long-term dependence effects [F10 and F11] 
takes place before optimizing.  

Table 2 presents the set of risk factors to be considered in the portfolio optimization 
procedure. Consistent with literature on strategic asset allocation, which points out that 
currency risk hedging is inappropriate for long-term portfolios (Solnik et al., 2003; 
Froot, 1993), all risk factors were included in their original currency.  

Table 2 
Adjusted Hurst exponents for risk factors* 

 
(*) Calculations based on daily time-series (Jan 1st 1995 – June 25th 2010). Significant (95%) t-stat results are highlighted. 

Source: authors’ calculations. 
 

According to Table 2 long-term dependence is significant for the two emerging 
market’s risk factors considered, namely equity and fixed income indexes, which –
again- validates the findings of Cajueiro and Tabak (2008).  

Regarding commodities, divergence between ܪෙ and 0.5 is rather low, with minor signals 
of antipersistence for metals and crude oil; agriculture and live stock commodities’ 
 .ෙ matches the independence assumptionܪ

Developed markets’ fixed income risk factors show low levels of persistence, except for 
short-term treasuries from UK and Germany, and medium-term treasuries from UK; it is 
noteworthy that long-term fixed instruments consistently tend to exhibit lower 
persistence than short-term ones. Concerning developed markets’ equity, findings of 
Cajueiro and Tabak (2008), Menkens (2007), Couillard and Davison (2004), Ambrose 
et al. (1993) and Lo (1991) are verified: there is no evidence of significant long-term 
dependence; therefore, Peters (1992) findings about long-term dependence in developed 
markets are contradicted.  

PRECIOUS METALS PREC.MET. 0,03% 1,07% 0,030       0,47         (1,15)       
INDUSTRIAL METALS IND.MET. 0,02% 1,38% 0,013       0,48         (1,00)       
AGRICULTURE & LIVE STOCK AGR.&L.S. ‐0,01% 0,91% (0,015)      0,50         (0,11)       
CRUDE OIL CRUDE.OIL 0,04% 2,24% 0,017       0,48         (0,92)       
DEVELOPED MARKETS EQ.DEV. 0,01% 1,01% 0,014       0,51         0,51        
EMERGING MARKETS EQ.EM 0,02% 1,26% 0,013       0,59         3,70        
EMERGING MARKETS JPM EMBI 0,04% 0,74% 0,060       0,59         3,86        
 US.TREASURY 1‐5Y US.T 1‐5Y 0,02% 0,15% 0,142       0,53         1,14        
 US.TREASURY 5‐10Y US.T 5‐10Y 0,03% 0,36% 0,075       0,52         0,77        
 US.TREASURY 10+Y US.T 10+Y 0,03% 0,60% 0,052       0,51         0,26        
 US.CORP AAA‐AA 1‐5Y US.CORP 1‐5Y 0,02% 0,17% 0,136       0,52         0,72        
 US.CORP AAA‐AA 5‐10Y US.CORP 5‐10Y 0,03% 0,37% 0,073       0,50         0,05        
 US.CORP AAA‐AA 10+Y US.CORP 10+Y 0,03% 0,55% 0,053       0,48         (0,94)       
 US.MORTGAGES AAA US.MRTG 0,03% 0,21% 0,126       0,50         (0,20)       
 GER.TREASURY 1‐5Y GER.T 1‐5Y 0,02% 0,12% 0,164       0,54         1,69        
 GER.TREASURY 5‐10Y GER.T 5‐10Y 0,03% 0,27% 0,098       0,52         0,84        
 GER.TREASURY 10+Y GER.T 10+Y 0,03% 0,53% 0,063       0,48         (0,87)       
 JAP.TREASURY 1‐5Y JAP.T 1‐5Y 0,01% 0,09% 0,083       0,51         0,42        
 JAP.TREASURY 5‐10Y JAP.T 5‐10Y 0,02% 0,24% 0,062       0,50         (0,21)       
 JAP.TREASURY 10+Y JAP.T 10+Y 0,02% 0,41% 0,047       0,50         (0,05)       
 UK.TREASURY 1‐5Y UK.T 1‐5Y 0,02% 0,14% 0,179       0,55         2,10        
 UK.TREASURY 5‐10Y UK.T 5‐10Y 0,03% 0,30% 0,096       0,54         1,55        
 UK.TREASURY 10+Y UK.T 10+Y 0,03% 0,52% 0,057       0,49         (0,28)       
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Interestingly, contrary to conventional wisdom, fixed income instruments’ mean returns 
significantly outperformed equity’s for the time-series under analysis; thus, it is likely 
that resulting efficient portfolios will disregard equity vis-à-vis academic basics. This 
supports recent concerns regarding the existence of a natural hedge from stocks in the 
long-run and of a positive equity risk premium (Valdés, 2010; Arnott, 2009). 

Using the adjusted estimated Hurst exponent (Table 2) Figure 6 exhibits the risk/return 
ratios for both scaling methods for 1-year and 10-year investment horizons. Relative 
return/risk ratios between methods clearly differ for almost all risk factors. Once 
dependence is taken into account extreme differences between return/risk ratios due to 
concealed riskiness resulting from serial-dependence are moderated; hence, it is 
plausible that adjusting for long-term persistence helps mitigating the well-known 
tendency of mean-variance optimization to provide extreme weights or corner solutions. 
Figure 6 results concur with Greene and Fielitz’s (1979) concern about how  return/risk 
performance measures (e.g. Sharpe, Treynor and Jensen ratios) are affected by the 
differencing interval assumption in presence of long-term dependence. 

 
Figure 6 

Return/Risk ratio for the standard and the enhanced methods 
1-year 10-year 

Source: authors’ calculations. 
 
Figure 7 exhibits the efficient frontiers for both scaling methods for 1-year and 10-year 
investment horizons. As expected, the standard method obtains a strictly dominating 
frontier with higher levels of return for each level of risk.  
 

Figure 7 
Efficient frontiers for the standard and the enhanced methods 

1-year 10-year 

Source: authors’ calculations. 
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Strict dominance of the traditional method’s efficient frontier occurs because relative 
return/risk ratios do not change with time horizon; adjusting for long-term dependence 
causes efficient portfolio weights associated with high (low) persistence risk factors to 
decrease (increase) as the horizon increases. This statement becomes evident when 
observing portfolio weights obtained by each method along the 1-year horizon frontier 
(Table 3). Each frontier consists of twenty portfolios, from the lowest risk to the highest 
return; average adjusted exponent ሺܪෙሻ and average return/risk ratio for each category of 
risk factors are also reported.  

 
Table 3 

1-year horizon efficient frontier’s weights 
 

(Panel a.) Square-root-of-time method 

 
 

(Panel b). Adjusted-Hurst scaling method 

 
Source: authors’ calculations. 

 
Relative overweighting of persistent risk factors (e.g. emerging markets’ fixed income - 
EMBI) is evident for the conventional method (Panel a.). When dependence is taken 
into account such overweight diminishes in favor of near-independent or antipersistent 
risk factors, such as Japan and German treasuries, US Mortgages or commodities. Such 
persistent risk factors’ relative overweighting is also validated for the ten-year horizon 
(Table 4).  

EQUITY EMBI EQUITY US.TREAS US.CORP US.MRTG GER.TRES JAP.TREAS UK.TREAS
0,482 0,585 0,589 0,512 0,517 0,499 0,495 0,513 0,501 0,526 ←Adj. H exponent

0,192 0,207 1,006 0,221 1,469 1,433 2,073 1,773 1,031 1,817 ←Return/Risk

1 3,0           0,9% 0,9% 0,0% 0,9% 11,0% 0,0% 0,0% 18,7% 58,4% 9,1%
2 3,3           0,7% 1,0% 0,0% 1,1% 13,1% 0,0% 0,0% 19,2% 48,9% 16,1%
3 3,5           0,7% 1,0% 0,3% 1,2% 15,0% 0,0% 0,0% 19,5% 39,3% 22,9%
4 3,6           0,9% 0,9% 0,8% 1,3% 14,5% 2,2% 0,0% 19,9% 30,1% 29,5%
5 3,6           1,0% 0,8% 1,3% 1,3% 11,8% 4,9% 1,4% 20,2% 21,4% 35,9%
6 3,6           1,1% 0,8% 1,5% 1,4% 11,2% 6,5% 2,1% 21,6% 13,4% 40,3%
7 3,5           1,2% 0,8% 2,0% 1,4% 6,9% 9,5% 4,4% 20,5% 6,8% 46,5%
8 3,4           1,6% 0,3% 3,3% 1,1% 0,0% 12,1% 10,0% 10,2% 3,3% 58,1%
9 3,3           2,1% 0,0% 6,2% 0,0% 0,0% 3,1% 19,3% 0,0% 1,8% 67,4%
10 2,9           2,6% 0,0% 11,8% 0,0% 0,0% 0,0% 24,7% 1,8% 0,0% 59,1%
11 2,5           3,5% 0,0% 16,8% 0,0% 0,0% 0,0% 26,3% 8,0% 0,0% 45,4%
12 2,2           4,3% 0,0% 20,9% 0,0% 0,0% 0,0% 29,4% 9,8% 0,0% 35,7%
13 2,0           5,0% 0,0% 25,1% 0,0% 0,0% 0,0% 31,9% 11,7% 0,0% 26,3%
14 1,8           5,7% 0,0% 31,6% 0,0% 0,0% 0,0% 20,5% 18,7% 0,0% 23,4%
15 1,6           6,5% 0,0% 37,8% 0,0% 2,5% 0,0% 7,4% 24,4% 0,0% 21,4%
16 1,5           7,1% 0,0% 44,4% 0,0% 4,9% 0,0% 0,0% 31,7% 0,0% 11,9%
17 1,4           6,4% 0,0% 53,5% 0,0% 2,1% 0,0% 0,0% 38,0% 0,0% 0,0%
18 1,3           3,0% 0,0% 67,9% 0,0% 0,0% 0,0% 0,0% 29,1% 0,0% 0,0%
19 1,1           2,5% 0,0% 83,5% 0,0% 0,0% 0,0% 0,0% 14,0% 0,0% 0,0%
20 1,0           0,0% 0,0% 100,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0%

RETURN / 
RISK

Port. 
#

COMMODITES

DEVELOPED MARKETSEMERGING MARKETS

EQUITY EMBI EQUITY US.TREAS US.CORP US.MRTG GER.TRES JAP.TREAS UK.TREAS
0,482 0,585 0,589 0,512 0,517 0,499 0,495 0,513 0,501 0,526 ←Adj. H exponent

0,227 0,129 0,615 0,207 1,317 1,403 2,127 1,586 1,019 1,503 ←Return/Risk

1 2,4           1,2% 0,5% 0,0% 1,1% 11,9% 0,0% 0,0% 14,8% 66,0% 4,6%
2 2,8           1,0% 0,5% 0,0% 1,2% 11,5% 0,6% 2,8% 15,7% 56,8% 9,9%
3 2,9           1,2% 0,5% 0,0% 1,3% 5,8% 4,4% 7,5% 16,4% 48,2% 14,9%
4 3,0           1,5% 0,4% 0,0% 1,3% 0,0% 8,1% 12,4% 17,0% 39,2% 19,9%
5 3,0           1,9% 0,4% 0,0% 1,4% 0,0% 8,6% 16,0% 17,3% 29,5% 24,7%
6 3,0           2,1% 0,5% 0,0% 1,6% 0,0% 9,6% 18,2% 18,7% 21,4% 27,9%
7 3,0           2,4% 0,6% 0,0% 1,7% 0,0% 10,6% 20,4% 20,1% 13,2% 31,1%
8 2,9           3,1% 0,3% 0,7% 1,4% 0,0% 8,1% 28,8% 9,6% 7,4% 40,6%
9 2,8           4,1% 0,0% 2,1% 0,4% 0,0% 0,0% 41,7% 0,0% 3,7% 47,9%
10 2,5           5,3% 0,0% 4,2% 0,0% 0,0% 0,0% 46,4% 8,0% 0,0% 36,1%
11 2,2           7,1% 0,0% 6,6% 0,0% 0,0% 0,0% 49,6% 19,1% 0,0% 17,6%
12 1,9           8,9% 0,0% 9,0% 0,0% 0,0% 0,0% 51,8% 30,4% 0,0% 0,0%
13 1,7           10,7% 0,0% 12,9% 0,0% 0,0% 0,0% 34,1% 42,3% 0,0% 0,0%
14 1,5           12,6% 0,0% 16,8% 0,0% 0,7% 0,0% 16,0% 53,9% 0,0% 0,0%
15 1,3           13,5% 0,0% 21,9% 0,0% 2,4% 0,0% 0,0% 62,2% 0,0% 0,0%
16 1,2           8,2% 0,0% 35,1% 0,0% 0,0% 0,0% 0,0% 56,7% 0,0% 0,0%
17 1,0           8,1% 0,0% 49,9% 0,0% 0,0% 0,0% 0,0% 41,9% 0,0% 0,0%
18 0,8           9,0% 0,0% 65,0% 0,0% 0,0% 0,0% 0,0% 26,0% 0,0% 0,0%
19 0,7           9,9% 0,0% 80,2% 0,0% 0,0% 0,0% 0,0% 10,0% 0,0% 0,0%
20 0,6           0,0% 0,0% 100,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0%
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Table 4 
10-year horizon efficient frontier’s weights 

 
(Panel a.) Square-root-of-time method 

 
 

(Panel b.) Adjusted-Hurst scaling method 

 
Source: authors’ calculations. 

 
Table 5 and Figure 8 present a summary of the weights assigned by both methods to the 
efficient frontier.   

Table 5 
1-year and 10-year horizon efficient frontier’s weights (summary) 

 
Source: authors’ calculations. 

 
 

EQUITY EMBI EQUITY US.TREAS US.CORP US.MRTG GER.TRES JAP.TREAS UK.TREAS
0,482 0,585 0,589 0,512 0,517 0,499 0,495 0,513 0,501 0,526 ←Adj. H exponent

0,993 0,793 5,542 0,821 6,251 6,162 9,000 7,518 3,786 7,906 ←Return/Risk

1 10,9         0,9% 0,9% 0,0% 0,9% 11,0% 0,0% 0,0% 18,7% 58,4% 9,1%
2 12,4         0,7% 1,0% 0,0% 1,1% 13,1% 0,0% 0,0% 19,2% 48,9% 16,1%
3 13,4         0,7% 1,0% 0,3% 1,2% 15,0% 0,0% 0,0% 19,5% 39,3% 22,9%
4 14,0         0,9% 0,9% 0,8% 1,3% 14,5% 2,2% 0,0% 19,9% 30,1% 29,5%
5 14,3         1,0% 0,8% 1,3% 1,3% 11,8% 4,9% 1,4% 20,2% 21,4% 35,9%
6 14,4         1,1% 0,8% 1,5% 1,4% 11,2% 6,5% 2,1% 21,6% 13,4% 40,3%
7 14,6         1,2% 0,8% 2,0% 1,4% 6,9% 9,5% 4,4% 20,5% 6,8% 46,5%
8 14,5         1,6% 0,3% 3,3% 1,1% 0,0% 12,1% 10,0% 10,2% 3,3% 58,1%
9 14,1         2,1% 0,0% 6,2% 0,0% 0,0% 3,1% 19,3% 0,0% 1,8% 67,4%
10 12,8         2,6% 0,0% 11,8% 0,0% 0,0% 0,0% 24,7% 1,8% 0,0% 59,1%
11 11,3         3,5% 0,0% 16,8% 0,0% 0,0% 0,0% 26,3% 8,0% 0,0% 45,4%
12 10,1         4,3% 0,0% 20,9% 0,0% 0,0% 0,0% 29,4% 9,8% 0,0% 35,7%
13 9,3           5,0% 0,0% 25,1% 0,0% 0,0% 0,0% 31,9% 11,7% 0,0% 26,3%
14 8,6           5,7% 0,0% 31,6% 0,0% 0,0% 0,0% 20,5% 18,7% 0,0% 23,4%
15 8,0           6,5% 0,0% 37,8% 0,0% 2,5% 0,0% 7,4% 24,4% 0,0% 21,4%
16 7,6           7,1% 0,0% 44,4% 0,0% 4,9% 0,0% 0,0% 31,7% 0,0% 11,9%
17 7,2           6,4% 0,0% 53,5% 0,0% 2,1% 0,0% 0,0% 38,0% 0,0% 0,0%
18 6,7           3,0% 0,0% 67,9% 0,0% 0,0% 0,0% 0,0% 29,1% 0,0% 0,0%
19 6,1           2,5% 0,0% 83,5% 0,0% 0,0% 0,0% 0,0% 14,0% 0,0% 0,0%
20 5,5           0,0% 0,0% 100,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0%

Port. 
#

RETURN / 
RISK

COMMODITES

EMERGING MARKETS DEVELOPED MARKETS

EQUITY EMBI EQUITY US.TREAS US.CORP US.MRTG GER.TRES JAP.TREAS UK.TREAS
0,482 0,585 0,589 0,512 0,517 0,499 0,495 0,513 0,501 0,526 ←Adj. H exponent

1,230 0,406 2,756 0,748 5,375 6,014 9,334 6,538 3,736 6,094 ←Return/Risk

1 8,5           1,3% 0,3% 0,0% 1,1% 11,9% 0,0% 0,2% 13,2% 68,7% 3,2%
2 10,4         1,4% 0,3% 0,0% 1,1% 3,9% 3,2% 9,0% 13,2% 58,9% 8,9%
3 11,5         1,9% 0,3% 0,0% 1,2% 0,0% 5,2% 16,6% 12,5% 47,9% 14,5%
4 11,9         2,6% 0,2% 0,1% 1,3% 0,0% 4,7% 23,6% 11,5% 35,9% 20,2%
5 12,0         3,1% 0,2% 0,2% 1,4% 0,0% 4,9% 28,8% 11,7% 25,1% 24,5%
6 11,9         3,6% 0,2% 0,3% 1,6% 0,0% 5,5% 33,3% 12,5% 14,8% 28,3%
7 11,7         4,6% 0,0% 0,9% 1,3% 0,0% 2,1% 43,9% 2,4% 8,3% 36,5%
8 11,2         5,9% 0,0% 2,2% 0,0% 0,0% 0,0% 50,4% 7,1% 3,7% 30,7%
9 10,3         7,4% 0,0% 3,7% 0,0% 0,0% 0,0% 53,8% 17,3% 0,0% 18,0%
10 9,3           9,3% 0,0% 5,3% 0,0% 0,0% 0,0% 55,4% 29,5% 0,0% 0,4%
11 8,3           11,4% 0,0% 8,2% 0,0% 0,0% 0,0% 38,2% 42,3% 0,0% 0,0%
12 7,5           13,5% 0,0% 11,0% 0,0% 0,0% 0,0% 20,5% 55,0% 0,0% 0,0%
13 6,8           15,6% 0,0% 13,8% 0,0% 1,9% 0,0% 2,0% 66,7% 0,0% 0,0%
14 6,0           11,5% 0,0% 23,1% 0,0% 0,0% 0,0% 0,0% 65,4% 0,0% 0,0%
15 5,2           9,9% 0,0% 34,2% 0,0% 0,0% 0,0% 0,0% 55,9% 0,0% 0,0%
16 4,4           11,4% 0,0% 45,9% 0,0% 0,0% 0,0% 0,0% 42,7% 0,0% 0,0%
17 3,8           12,9% 0,0% 57,7% 0,0% 0,0% 0,0% 0,0% 29,4% 0,0% 0,0%
18 3,4           14,4% 0,0% 69,4% 0,0% 0,0% 0,0% 0,0% 16,2% 0,0% 0,0%
19 3,1           15,9% 0,0% 81,1% 0,0% 0,0% 0,0% 0,0% 3,0% 0,0% 0,0%
20 2,8           0,0% 0,0% 100,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0%

EMERGING MARKETS DEVELOPED MARKETS
Port. 
#

RETURN / 
RISK

COMMODITES

EQUITY EMBI EQUITY US.TREAS US.CORP US.MRTG GER.TRES JAP.TREAS UK.TREAS
0,482 0,585 0,589 0,512 0,517 0,499 0,495 0,513 0,501 0,526

Mean 2,9% 0,3% 25,4% 0,5% 4,6% 1,9% 8,9% 16,8% 11,2% 27,4%
Max 7,1% 1,0% 100,0% 1,4% 15,0% 12,1% 31,9% 38,0% 58,4% 67,4%
Min 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0%
Mean 5,6% 0,2% 20,2% 0,6% 1,6% 2,5% 17,3% 24,0% 14,3% 13,8%
Max 13,5% 0,6% 100,0% 1,7% 11,9% 10,6% 51,8% 62,2% 66,0% 47,9%
Min 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0%
Mean 7,9% 0,1% 22,9% 0,4% 0,9% 1,3% 18,8% 25,4% 13,2% 9,3%
Max 15,9% 0,3% 100,0% 1,6% 11,9% 5,5% 55,4% 66,7% 68,7% 36,5%
Min 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0%

H=Hadj    
(10‐years)

H=0,5       
(n ‐years)

H=Hadj      
(1‐years)
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Figure 8 
Square-root-of-time and Adjusted-Hurst methods for 1-year and 10-year weights  

H=0.5 (n-year) H=ܪෙ (1-year) H=ܪෙ (10-year) 

 
Source: authors’ calculations. 

 
 

5. Final remarks 

Most effort has been given to financial assets’ returns short-term dependence. In this 
sense many models are readily available to improve the estimation of the variance and 
to a lesser degree covariance inputs for portfolio construction.  

Less emphasis has been given to long-term dependence of returns. Akin to financial 
literature this document shows that (i) significant long-term dependence is common in 
assets’ returns time-series; (ii) significant persistence is prevalent for emerging fixed 
income markets, and fairly frequent for emerging equity markets –mainly the less liquid 
ones; (iii) independence is representative of developed fixed income and equity markets, 
and somewhat recurrent for liquid emerging equity markets; (iv) energy markets exhibit 
significant antipersistence.  

Interestingly, this document’s support for prior evidence includes data from the most 
recent and severe episode of widespread financial disruption. Divergence with 
documented literature is circumscribed to authors’ findings of recurrent antipersistence 
for developed equity markets, as well as a few liquid emerging markets.   

This document’s long-term dependence assessment relies on rescaled range analysis 
(R/S), a popular and robust methodology designed for Geophysics but extensively used 
in financial literature. Well-known issues of R/S such as the optimal minimum and 
maximum size of periods were surmounted vis-à-vis some previous studies, resulting in 
reduced estimators’ standard errors and minimal interference of short-term serial 
dependence in the results.   

Ahead of R/S financial literature, authors used the spread between estimated Hurst 
exponent (ܪ෡) and the expected Hurst exponent for independent and finite time-series 
ሶܪ) ) to estimate an adjusted Hurst exponent ሺܪෙሻ. Under a generalized version of the 
conventional volatility and covariance scaling procedure, authors suggest using this 
adjusted measure of long-term dependence for practical purposes, where long-term 
mean-variance portfolio optimization is a natural choice to begin with. 
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Comparing efficient portfolio weights resulting from customary mean-variance 
optimization (e.g. independency assumption reliant) and the suggested enhanced 
procedure shows that the former tends to overweight persistent risk factors. Once long-
term dependence is considered via the proposed covariance scaling procedure, the return 
per unit of risk of persistent (antipersistent) risk factors is adjusted downwards 
(upwards), decreasing (increasing) the weight of high (low) persistence risk factors as 
the investment horizon increases. Results provide evidence of the significance of weight 
differences for 1-year and 10-year investment horizons and of how these differences 
reveal that adjusted efficient frontiers are less optimistic (e.g. there is a lower level of 
return for each level of risk) than conventional ones.  

Resulting less optimistic efficient frontiers and their corresponding weights also reveals 
that long-term dependence recognition conveys various practical advantages, especially 
for long-term institutional investors, such as central banks, pension funds and sovereign 
wealth managers. First, because the proposed scaling procedure exposes concealed 
riskiness resulting from persistence, extreme relative return/risk ratios differences due to 
inappropriate risk scaling are moderated, avoiding to some extent excessive risk taking 
in long-term portfolios and mitigating the presence of extreme portfolio weights.     

Second, evidence of significant persistence in small and illiquid capital markets 
provides proof of masked risks within their securities. Such underestimation of local 
instruments’ long-term risk could explain two well-known facts of those capital 
markets: (i) the tendency to hold a disproportionate level of investments within the 
domestic market or “home bias”, and (ii) the reluctance to hold foreign currency-
denominated assets. Recognizing long-term dependence would make local –persistent- 
instruments from small and illiquid markets less attractive within the mean-variance 
asset allocation framework, and developed markets’ –independent or antipersistent- 
instruments more attractive.  

Given these insights the authors are currently considering three research topics. Firstly,   
to study the contribution of individual risk factors to portfolio’s persistence. Initial 
results herein presented show that persistence at the portfolio level can be significantly 
higher than the weighted persistence of individual assets, especially for small and 
illiquid markets, thereby reinforcing the international diversification case.  

Secondly, akin to upside and downside risk concepts, authors also envision a 
methodology capable of differentiating upside from downside persistence. This is a key 
issue because persistence may be an asset’s desirable (undesirable) feature if its price is 
expected to rise (fall) in the future (e.g. a persistent bond may be attractive on the verge 
of monetary expansion). In the meanwhile authors suggest considering market’s 
environment and investors’ views in order to decide the convenience of underweighting 
persistent risk factors. Alternatively, including optimization constraints such as a 
threshold for maximum drawdown (Reveiz and León, 2010) may capture investor’s 
natural inclination (reluctance) to hold upside (downside) persistent risk factors.  
  
Finally, because Black-Litterman portfolio optimization is heavily reliant on the serial 
long-term independence assumption via traditional volatility scaling and the starting 
global CAPM equilibrium, authors’ agenda also includes designing long-term 
dependence adjustments to this celebrated approach.  
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7. Appendix 

A. For a time series of N returns, having k independent (non overlapping9) windows or 
samples of size n,  divide the original series in such way that n×k = N. 
 

B. Estimate the arithmetic mean of each k-segment (̂ߤ௞) of size n . 
 

C. Obtain the difference between each i-return and the mean of each k segment (̂ߤ௞). 

௜ܻ,௞ ൌ ௜,௞ݔ െ  ௞ߤ̂

D. Calculate accumulative differences for each k segment. 

௜,௞ܦ ൌ ෍ ௜ܻ,௞

௡

௜ୀଵ

 

E. Calculate range (Rn,k) of the Di,k series. 

ܴ௡,௞ ൌ ,ଵ,௞ܦ൫ݔܽ݉ … , ,௜,௞ܦ … ௡,௞൯ܦ െ  ݉݅݊൫ܦଵ,௞, … , ,௜,௞ܦ …   ௡,௞൯ܦ

F. Estimate standard deviation for each k segment (Sn,k). 

ܵ௡,௞ ൌ ඩ
1

ሺ݊ െ 1ሻ ෍൫ݔ௜,௞ െ ௞൯ଶߤ̂
௡

௜ୀଵ

 

G. Calculate rescaled range for each segment k.  
 

ሺܴ ܵ⁄ ሻ௡,௞ ൌ ܴ௡,௞
ܵ௡,௞

൘  

H. Calculate average rescaled range for k segments of size n. 
 

ሺܴ ܵ⁄ ሻ௡ ൌ
1
݇ ෍ሺܴ ܵ⁄ ሻ௡,௞

௞

௜ୀଵ

 

(R/S)n corresponds to average standardized distance covered per unit of time n. 

The previous procedure must be done for different values of k, where kj=nmin… nmax, 
and where nmin y nmax corresponds to the minimum and maximum of the chosen window 
to calculate the rescaled range. Thus, we have j values of ሺܴ ܵ⁄ ሻ௡, where ௝݊ ൌ ே

௞ೕ
. 

Finally, using n and ሺܴ ܵ⁄ ሻ௡ values we estimate the ordinary least squares regression 
proposed by Mandelbrot and Wallis (1969a y 1969b), where H corresponds to the 
estimated Hurst exponent: 

ሺܴ݃݋ܮ ܵ⁄ ሻ௡ ൌ ሺܿሻ݃݋ܮ ൅ ሺ݊ሻ݃݋ܮܪ  

                                                 
9 For a discussion regarding the use of overlapping and non-overlapping segments, please refer to 
Nawrocki (1995) and Ellis (2007). 
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