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Abstract

A dynamic linear model for data revisions and delays is proposed.
This model extends Jacobs & Van Norden’s [13] in two ways. First, the
“true” data series is observable up to a fixed period of time M . And
second, preliminary figures might be biased estimates of the true se-
ries. Otherwise, the model follows Jacobs & Van Norden’s [13] so their
gains are extended through the new assumptions. These assumptions
represent the data release process more realistically under particular
circumstances, and improve the overall identification of the model.

An application to the year to year growth of the Colombian quar-
terly GDP reveals that preliminary growth reports under-estimate the
true growth, and that measurement errors are predictable from the
information available at the data release. The models implemented in
this note help this purpose.
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Modelando las Revisiones de Datos∗

Juan Manuel Julio†

Resumen

Se propone un modelo lineal dinámico para la demora y revisión
de datos. Este modelo extiende el de Jacobs & Van Norden [13] en dos
direcciones. Primero, la serie de datos definitivos se observa hasta un
periodo fijo de tiempo M . Y segundo, los datos preliminares pueden
ser estimadores sesgados de los definitivos. Aparte de esto el modelo
sigue al de Jacobs & Van Norden [13] con lo cual sus ganancias se
extienden a través de los nuevos supuestos. Estos supuestos repre-
sentan de manera realista el proceso de publicación de la información
bajo circunstancias particulares, y mejora la identificación global del
modelo.

Una applicación al crecimiento anual del PIB trimestral Colom-
biano muestra que los reportes preliminares del crecimiento sub-
estiman el crecimiento definitivo, y que los errores de medición se
pueden pronosticar a partir de la información disponible en cada fecha
de publicación de datos. Los modelos que se implementan en este tra-
bajo sirven para este propósito.
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1 Introduction

The revision and delay of macroeconomic data releases have an important

effect on the design and analysis of monetary and fiscal policies. Monetary

policy, for instance, depends critically on the assessment of the current state

of the economy and its short to medium term outlook, which summarizes in

a set of indicators within which the GDP, the output gap and the inflation

rate play a key role. However, the current view of the economy is blurred

by the revision and delay of current and near past GDP figures, and these

revisions and delays, in turn, increase the uncertainty of output gap and

inflation forecasts. As a result, GDP revisions and delays distort the short

to medium term outlook of the economy as well. Therefore, GDP revisions

and delays increase the uncertainty over the current state of the economy

and its short to medium term outlook. See Harrison et al [9].

Consequently, a policymaker that is aware of the uncertainty over the

current and short to medium term outlook of the economy may elicit passive

or over-smoothed policies, while a policymaker that ignores these issues, thus

taking preliminary GDP figures as “true”, may draw economy destabilizing

policies. For this reason, models to reduce the effect of data revisions and

delays on macroeconomic figures are required.

There are two polar views on the information content of ex-post revision

errors Ỹt − Y t+k
t , the differences between the true figures and preliminary

releases. Revision errors may contain “news” or “noise”. If revision errors

are pure news, preliminary data releases are the optimal now-casts of the

true figures, and revision errors are not forecastable from the information

available at the data release. Conversely, if revision errors are pure noise,

preliminary data releases are not the optimal now-casts of true figures, and



Modeling Data Revisions 3

revision errors can be forecasted from the information available at the data

release. See Mankiw & Shapiro [14] and Arouba [2], for instance.

Furthermore, revision errors may contain “spill-over effects”. Spill-overs

relate to correlations between measurement errors of neighboring vintages

and improve the forecasts of revision errors.

Jacobs and Van Norden [13] proposed a linear dynamic model to include,

in a more realistic and parsimonious way than previous work, the dynamics

of news, noise and spill-over effects in measurement errors. These authors

assume that the true values are not observable but belong to a class of

dynamic models like the ARIMA or the structural models families, and

implicitly assume that measurement errors have zero mean.

According to these authors this model provides a framework for the

“proper formulation and conduct of monetary and fiscal policy”. In fact,

three of the most important activities in policy design and analysis can be

performed with this model: (i) data description, (ii) optimal forecast and

inference, and (iii) cycle-trend decomposition, all of them in an environment

of data revisions and delays.

While the assumption of non observability of the true values suits situ-

ations in which every historic figure might be revised in the future, it also

conveys important modeling and interpretation issues. Three major conse-

quences derive from this assumption. First, the dynamics of the true figures

is not identified from the observable data. Second, the mean measurement

error is not identified, either, and is therefore set to zero, which is is at odds

with the stylized features of ex-post measurement errors. And third, the

interpretation of the output gap, for instance, becomes involved. Under this

assumption the output gap becomes the unobserved cyclical component of

an unobserved series that follows an unobserved dynamics.
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However, several statistical bureaus, one of which is Colombia’s DANE,

reset the starting date of future GDP releases with each methodology change.

In this case the data release process is depicted in Figure 1 where it can be

observed that the last vintage prior to the new starting date contains reports

that might be regarded as true. Therefore, at every period of time t, when

policy decisions are made, there is a fixed period of time M(t) before which

the true data is observed. See Jacobs & Van Norden [13].
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Figure 1: DANE’s GDP Data Release Process.

A dynamic linear model for data revisions and delays is proposed in

this paper. This model extends Jacobs & Van Norden’s [13] in two ways.

First, the “true” data series is observable up to a fixed period of time M .

And second, preliminary figures might be biased estimates of the true series.

Otherwise, the model follows Jacobs & Van Norden’s [13] so their gains are

extended through the new assumptions. These assumptions represent the

data release process more realistically under particular circumstances, and

improve the overall identification of the model.

An application to the year to year growth of the quarterly Colombian
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GDP reveals features of the Colombian GDP release process that have an

important effect on the use of these figures for policy purposes. First, pre-

liminary growth figures under-estimate the true growth. And second, mea-

surement errors contain noise and are thus predictable from the information

available at the data release.

More precisely, the downward bias of the five more recent releases are

0.96%, 0.73%, 0.73%, 0.67% and 0.77%, and strong evidence in favor of the

presence of noise was found. Moreover, the first data release has a statis-

tically significant downward bias which lies in the 0.57% to 1.14% interval,

on average. The models estimated in this paper provide optimal now-casts

and forecasts of the true Colombian GDP growth.

Similar downward biases were found in Franses [7], Table 1 and Garratt

& Vahey [8].

2 Literature Review

For a given series whose “true” values are denoted as Ỹt, statistical bureaus

release a set of historical figures {Y t
1 , Y

t
2 , . . . , Y

t
t−2, Y

t
t−1} at every period of

time t. This set of preliminary and (possibly) true figures is known as the

tth data vintage. In this case a delay of one period of time to obtain the

preliminary figure for the current period is assumed, and the data release

schedule is represented by the following data release matrix

Y 2
1 Y t−k+1

1 . . . Y t
1

. . .
...

...

Y t−k+1
t−k . . . Y t

t−k
. . .

...
Y t
t−1

where each column corresponds to a data vintage.



6 J. M. Julio

2.1 State Space Forms for Data Revisions

Several types of models have been proposed to explain the dynamics of

measurement errors. These models have conveniently been written in terms

their time invariant State Space Forms, SSFs,

Yt = d+Zαt + εt

αt+1 = c+ Tαt +Rηt+1 (2.1)

In earlier models the observation vector of the SSF contained the l > 1

most recent releases in the last vintage, Y t =
[
Y t
t−1, Y

t
t−2, . . . , Y

t
t−l

]′
, and was

assumed that true values are observable after l−1 periods of time of the first

release, Ỹt = Y t+l
t . See Howrey [12], Trivellato & Rettore [19], Bordignon &

Trivellato [3], Patterson [17], Mariano & Tanizaki [15], Busetti [4], Harvey

[10], Jacobs & Van Norden [13] and Harvey et. al. [11] for instance.

However, Jacobs & Van Norden [13] found that models based on this

observation vector lack parsimony, do not permit ”a clean distinction” of

the properties of measurement errors, and the assumption that the true

value is observable after l− 1 periods of time of the first release, Ỹt = Y t+l
t ,

is at odds with the stylized facts of measurement errors.

Therefore, these authors propose a linear dynamic model to include, in a

more realistic and parsimonious way, the dynamics of news, noise and spill-

over effects in measurement errors. In their model, the observation vector

contains the releases for time t of the l most recent vintages of data, Yt =[
Y t+1
t , Y t+2

t , . . . , Y t+l
t

]′
. In addition, these authors drop the assumption

that the true values are observable after l − 1 periods, Ỹt = Y t+j
t ∀j ≥ l,

and assume, instead, that the true values are not observable but belong to a

class of dynamic models like the ARIMA or the structural models families.

The ARIMA and structural models families include a conveniently extensive
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variety of dynamic models for the “true” process. Finally, these authors

implicitly assume that measurement errors have zero mean.

2.2 News and Noise in Revision Errors

It has been widely acknowledged that revision errors, the differences between

the true ex-post figures and preliminary releases for time t, U t+j
t = Ỹt−Y t+j

t

for j = 1, 2, 3, . . . , are not “well behaved”. This observation leads to the

classification of the information content of measurement errors as news or

noise. See Mankiw & Shapiro [14], Arouba [2], Siklos [18] and Franses [7]

for instance.

Revision errors are well behaved if they satisfy the properties of ratio-

nal forecast errors and are thus regarded as “news”. In this case, mea-

surement errors do not correlate with the releases of previous vintages,

cov(U t+j
t , Y t+i

t ) = 0 for i ≤ j, and, therefore, revision errors are not pre-

dictable from the information available at the time of the release. Under

this circumstances, preliminary releases are the optimal now-casts of the

true figures. See Mankiw & Shapiro [14] and Arouba [2] for instance.

Conversely, if revision errors lack the properties of rational forecast er-

rors, preliminary releases are not the optimal now-casts of the true figures

and revision errors are said to contain “noise”. In this case cov(U t+j
t , Y t+i

t ) ̸=

0 which may be accomplished by setting cov(U t+j
t , U t+i

t ) = 0 for all i ̸= j.

Statistical test for the hypothesis of noise and news were developed by

De Jong [5] and Mincer & Zarnowitz [16]. These tests are based on linear

regressions of ex-post measurement errors on the true values and prelimi-

nary releases respectively. Although both regressions include an intercept,

they are not “collective exhaustive” as both nulls may be rejected when the

intercept is non zero. See Jacobs & Van Norden [13] and Arouba [2].
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2.3 Spill-over Effects

Spill-over effects arise, for instance, when the revision of one figure in the

vintage implies the revision of the report in neighboring vintages. Therefore,

spill-over effects help forecast revision errors. See Jacobs & Van Norden [13]

for instance.

3 The Statistical Model

The model is described in terms of its time varying SSF

Yt = dt +Ztαt + εt (3.1)

αt+1 = Tαt +Rηt+1 (3.2)

where 3.1 and 3.2 are the time varying observation equation and the time

invariant state equation respectively. Standard normality and independence

assumptions are imposed on the vectors of observation and state innovations,

εt and ητ , and on the initial state vector α0 as well. These vectors have

variance covariance matrices Ht, Q and P0, respectively. See Harvey [10],

Anderson & Moore [1] and Durbin & Koopman [6] for instance.

We assume that the true values are observed up to a fixed period of

time 1 < M = M(T ) < T , where T is the effective sample size, and it is

also assumed that measurement errors may not have zero mean under noise,

dj = E[Ỹ †
t − Y t+j

t ] ̸= 0.

To introduce these assumptions into Jacobs & Van Norden’s model let

Ỹt be the observed true value of the series at time t, for t = 1, 2, . . . ,M , and

let Ỹ †
t denote the true underlying value at t, ∀t. Therefore,

Ỹt = Ỹ †
t whenever 1 ≤ t ≤ M

and otherwise Ỹt is not observed.
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Let us also denote Y1,t =
[
Y t+1
t , Y t+2

t , . . . , Y t+l
t

]′
the vector containing

the reports for time t of the l more recent vintages of data. Therefore, the

observation vector in 3.1 is defined as

Yt =


[

Ỹt
Y1,t

]
if 1 ≤ t ≤ M

Y1,t if M < t ≤ T

whose size is Nt = l + I(t){t≤M}, where I(t){t≤M} is the indicator function

of t ∈ {t ≤ M}.

From 3.1 it can be observed that dt, Zt and εt have also Nt rows, and the

covariance matrix of the observation innovations, Ht, has size Nt. However,

apart from their size, dt, Zt and Ht are time invariant as we will see in the

following.

Therefore, model 3.1-3.2 differs from a time invariant SSF as the size of

the observation vector, Nt, is time varying. This difference, however, does

not hinder the application of the Kalman filter and the prediction error

decomposition. A careful tracking of matrix and vector sizes suffices for

these algorithms to work in this case. See Harvey [10].

Following Jacobs & Van Norden [13], the state vector has four compo-

nents,

αt =
[
Ỹ †
t ,ϕ

′
t,ν

′
t, ζ

′
t

]′
(3.3)

with sizes 1, b, l and l respectively, where the unobserved component ϕt

determines the dynamics of Ỹ †
t , and νt and ζt are the unobserved news and

noise components respectively.

Letting dj = E[Ỹ †
t − Y t+j

t ] denote the mean measurement error of the

report for time t of the t + jth vintage, and d1 = [d1, d2, . . . , dl]
′ the vector

containing the mean measurement errors related to the last l vintages, for



10 J. M. Julio

time t, by setting

dt =


[

0
d1

]
if t ≤ M

d1 if t > M
, (3.4)

Zt =


[

1 01×b 01×l 01×l

1l×1 0l×b Il Il

]
if t ≤ M[

1l×1 0l×b Il Il
]

if t > M
(3.5)

and

Ht =

{
0(l+1)×(l+1) if t ≤ M

0l×l if t > M
(3.6)

the observation equation 3.1 becomes

Ỹt = Ỹ †
t if 1 ≤ t ≤ M

Y1,t = d1 + Ỹ †
t 1l×1 + νt + ζt (3.7)

where the first equation states that the true figures are observed up to time

M , and the second becomes “Release=Bias+Truth+News+Noise” for all t.

The state equation is determined by

T =


T11 T12 0 0
T21 T22 0 0
0 0 T33 0
0 0 0 T44

 (3.8)

where the blocks of T have row sizes 1, b, l, l and column sizes 1, b, l, l, re-

spectively, and

R =


R1 R3 0
R2 0 0
0 −U1 × diag(R3) 0
0 0 R4

 (3.9)

whose blocks have row sizes 1, b, l, l and column sizes r−2l, l, l, respectively,

U1 is an upper triangular matrix full of ones, R3 = [σν1, σν2, . . . , σνl], and

R4 is an l × l time invariant matrix to be specified below.
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Conformably, the vector of state innovations is partitioned as ηt =[
η′
et,η

′
νt,η

′
ζt

]′
where ηet are the innovations to the underlying true values,

and ηνt and ηζt are the innovations to the unobserved news and noise com-

ponents respectively. In this case the variance covariance matrix of the state

innovation vector is Q = Ir.

Therefore, the state equation 3.2 summarizes in

Ỹ †
t+1 = T11Ỹ

†
t + T12ϕt +R1ηet +R3ηνt

ϕt+1 = T21Ỹ
†
t + T22ϕt +R2ηet

νt+1 = T33νt −U1 × diag(R3)ηνt

ζt+1 = T44ζt +R4ηζt (3.10)

where

• The first and second equations determine the dynamics of the true

underlying values of the series.

• News correlate with the true underlying series.

• Noise does not correlate with the true underlying series.

• News and noise are mutually independent and behave like VAR(1)

models with identifying restrictions determined by −U1 × diag(R3)

and R4 respectively.

In order to understand the dynamics of news, noise and spill-over effects

and their relationship with the observed data, it is advisable to study them

independently. See Jacobs & Van Norden [13].
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3.1 Pure News

In this case, ζt and T33 are dropped from the model and the relevant equa-

tions become

Y1,t = d1 + Ỹ †
t 1l×1 + νt

Ỹ †
t+1 = T11Ỹ

†
t + T12ϕt +R1ηet +R3ηνt

νt+1 = −U1 × diag(R3)ηνt

where the measurement errors of the l most recent consecutive vintages are

the elements of Ut = −d1 − νt, and E [Ut] = −d1.

Since

−U1 × diag(R3) = −


σν1 σν2 . . . σνl

0 σν2
. . .

...
...

. . .
. . . σνl

0 . . . 0 σνl


cov(U t+j

t , Y t+i
t ) = 0 for i ≤ j. Therefore, measurement errors do not corre-

late with the releases of previous vintages and are thus not predictable from

the information available at the time of the release.

3.2 Pure Noise

Under pure noise the measurement errors of consecutive vintages are not

correlated, Cov(U t+j
t , U t+j+1

t ) = 0 ∀t and ∀j.

In this case νt andR4 are dropped from the state vector, and the relevant

equations of the model become

Y1,t = d1 + Ỹ †
t 1l×1 + ζt

Ỹ †
t+1 = T11Ỹ

†
t + T12ϕt +R1ηet

ζt+1 = R4ηζt
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thus the vector containing the measurement errors of contiguous vintages

becomes Ut = −d1 − ζ. The condition for measurement errors to be noise

is R4 = diag(σζ1, σζ2, . . . , σζl).

By definition, measurement errors are not correlated with the true values,

which implies that measurement errors correlate with the available vintage.

Therefore, revision errors, Y t+j+1
t − Y t+j

t are forecastable.

If preliminary figures become more precise over time, the condition σζl ≤

σζ,l−1 ≤, . . . ,≤ σζ2 ≤ σζ1 might also be imposed.

3.3 Spill-overs

Spill-over effects can be parameterized by specifying the matrices T33 or T44

of equation 3.8 for news and noise, respectively.

For instance, in the case of noise and spill-overs, simple correlation can

be specified as T44 = ρζIl. In the case of higher order correlation, additional

copies, ζt−k are added to the state vector, and the corresponding matrices

are specified correspondingly.

3.4 ARIMA Model Specification

The state equation 3.10 allows a variety of specifications for the dynamics

of the underlying true values Ỹ †
t through the appropriate parametrization

of ϕt, T11, T12, T21, T22, R1 and R2. These parameterizations include the

ARIMA and the structural models families.

For instance, if Ỹ †
t is assumed to be an ARMA(1, 4) model,

(1− ϕ1B)Ỹ †
t = (1 + θ1B + θ2B

2 + θ3B
3 + θ4B

4)et

these vectors and matrices become T11 = [ϕ1], T12 = [θ1, θ2, θ3, θ4], T21 =
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04×1, ϕt = [et, et−1, et−2, et−3]
T , R1 = [σe],ηet = [ηet],

T22 =


0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0


and R2 = [σe, 0, 0, 0]

T

Therefore, under news we have

Ỹ †
t+1 = ϕ1Ỹ

†
t +

3∑
i=0

θi+1et−i + σeηet +R3ηνt
et+1

et
et−1

et−2

 =


0
0
0
0

 Ỹ †
t +


0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0




et
et−1

et−2

et−3

+


σe
0
0
0

 ηet

For the specification of other members of the ARIMA family and the

structural models family see Jacobs & Van Norden [13].

4 Results

4.1 Data

The data set analyzed in this paper contains Colombian growth vintages

from 2002Q2 to 2010Q1 released by DANE, the Colombian statistics bureau.

These DGP releases exhibit a delay of one quarter, thus the 2002Q2 vintage,

for instance, contains GDP growth reports from 1995Q1 to 2002Q1. The

data set comprises two different methodologies. The first, called “base-1994”

methodology, contains vintages from 2002Q2 to 2008Q1, whose reports start

at 1995Q1, while the second, named “base-2000” methodology, contains

vintages from 2008Q2 to 2009Q4, whose reports start at 2001Q1.

GDP growth releases are considered true after 5 years of the first release.

This choice arises from the decomposition of measurement errors as between

and within methodologies.
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Figure 2: Final Revision Error, Ỹt − Y t+1
t in Colombian growth Releases.

4.2 News and Noise in Colombia’s Growth

Methodology changes have an important effect on final revision errors. The

extent of final revision error, the difference between the true growth and the

first growth release Ỹt − Y t+1
t , is depicted in Figure 2. Final revision errors

tend to be big and positive, on average about 1%, which shows that the first

release of GDP data tends to under-estimate the true growth. The highest

final revision error, for instance, happens for the GDP report of 2002Q2,

which was published for the first time in the 2002Q3 vintage. The final

revision error for this quarter is a remarkable 2.53%, which corresponds to

an initial report of 2.21% and a true one of 4.74%.

Furthermore, consecutive revisions tend to be small as Figure 3 shows.

The first five releases of GDP growth intertwine closely together and thus

consecutive revision errors, Y t+j+1
t − Y t+j

t , tend to be small and may also

have zero mean. This contrasts sharply with the final revision error. The

true growth seldom crosses the lines of the first five preliminary releases.
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Figure 3: “True” Growth and the First Five Corresponding Releases

Evidence on the importance of news and noise in measurement errors

may be found in Figure 4. This Figure displays the correlations between

consecutive measurement errors Y t+j
t − Y t+j−1

t , on one hand, with the true

figures Ỹt and their current release Y t+j
t on the other, for j = 1, 2, 3, ..., 10.

The dynamics of revision errors in Colombian growth data is complex,

and a mixed model, news+noise, might be appropriate. The correlations of

Figure 4 tend to be high, starting at 0.4 with a minimum of −0.4. The fact

that both correlations tend to be different from zero for most of the revi-

sions indicates the rejection of both hypothesis, pure news and pure noise.

However, the fourth and eighth revisions exhibit a zero correlation with the

true figures while the correlation with the current release is different from

zero. This result suggests a pure noise model for these revisions. However,

the ninth and tenth revisions display correlations close to zero suggesting

that none of the two models, pure noise or pure news, is rejected.

Finally, Figure 5 shows evidence that suggests the presence of slight spill-

over effects. The Figure contains the auto-correlation of the first revision
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Figure 4: Correlation of Consecutive Measurement Errors

error, Y t+2
t − Y t+1

t , the second Y t+3
t − Y t+2

t , the third and fourth revision

errors, all to the seventh lag. These autocorrelations tend to be small, but

are enough to consider the presence of spill-overs.

Summarizing, Colombian growth data shows evidence in favor of a mixed

model, noise+news, final mean measurement errors different from zero, and

some evidence in favor of spill-overs.

4.3 Estimation Results

Six models were estimated for the revision of the year to year growth of the

Colombian quarterly GDP. The first two contain news, the third and fourth

contain noise and the last two contain both news and noise. Members of

each pair differ from each other because of the inclusion of spill-overs. The

observation vector comprises the releases for time t of the first five vintages

of data, Y t+j
t for j = 1, 2, 3, 4, 5 and the true figure Ỹt until M =2006Q1.

After this date the observation vector contains the releases of the five more

recent vintages of data only.
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Figure 5: Autocorrelation of Measurement Errors

From the identification of the true series the model for the true underly-

ing growth is specified as an ARMA(1, 1). The standard deviations in the

R matrix are re-parameterized as σe = eθε , σν,j = eθν,j and σζ,j = eθζ,j for

j = 1, 2, ..., l = 5 in order to avoid restricted maximization procedures.

Parameter estimation was carried out by maximum likelihood meth-

ods based on the prediction error decomposition. The maximization of the

likelihood function was performed by the Newton-Raphson method which

provides a numerical approximation to the Hessian matrix from which the

standard deviations of parameter estimators were derived. Moreover, the

log-likelihood, AIC and BIC information criteria were calculated in order to

compare the models.

Convergence to the maximum likelihood estimates of the parameters was

achieved after a few steps, 6 or 7, for the first two pairs of models regardless

of the starting point. In the largest models, news + noise, convergence

was slower and, depending on the starting point, sometimes reached saddle

points. After convenient starting values were chosen a maximum was reached
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in 24 iterations. Comparison of the likelihood function to those obtained

over a grid of plausible parameter values suggest that a global maximum

was reached.

Deterministic effects were subtracted prior to estimation so that all series

have zero mean. This was performed in two steps. The long run mean

of the true growth was subtracted from all series. And then, the mean

difference between preliminary and true series, Y t+j
t − Ỹt was subtracted

from preliminary figures. Table 1 displays the estimated mean of the true

growth and the mean bias of the first five preliminary figures. Biases tend

to be high, close to 1.0% and the long run mean of the true growth is 3.57%.

Positive mean bias in preliminary growth figures were found by Franses

[7], Table 1.

Parameter Estimate

E[Ỹt] 3.5700

E[Ỹt − Y t+1
t ] 0.9601

E[Ỹt − Y t+2
t ] 0.7332

E[Ỹt − Y t+3
t ] 0.7290

E[Ỹt − Y t+4
t ] 0.6685

E[Ỹt − Y t+5
t ] 0.7742

Table 1: Mean of the True Growth and Mean Bias of the First Five Prelim-
inary Releases

4.3.1 News and Noise Models

The estimation results are contained in Tables 1 to 4. The second and third

columns of Tables 2-4 contain the estimated parameter and its corresponding

standard deviations for models without spill-over effects, and the fourth

and fifth columns display the estimated parameter and their corresponding

standard deviations for models with spill-over effects. The following results



20 J. M. Julio

arise from these tables.

• The first five releases of the GDP growth under estimate the true

growth. The mean biases E[Ỹt − Y t+j
t ] are not only positive but also

big in size, 0.96%, 0.73%, 0.73%, 0.66%, and 0.77% for j = 1, 2, ..., 5

respectively. This result shows that the measurement errors are slowly

corrected during the first five releases of data and important correc-

tions arise in the long run.

• The AR(1) estimated parameters ϕ̂1 are between 0.82 and 0.86 which

reveals a high persistence of growth innovations. The MA(1) param-

eters θ̂1, however, are not statistically significant. The t statistics for

these parameters lie in the −1.23 to −0.86 interval.

• Spill-overs have no significant effect on the dynamics of measurement

errors. The t statistics for these parameters lie in the −1.27 to 0.48

interval. This result also follows from the comparison of “AIC” and

“BIC” within each pair of models.

Table 2 contains the estimation results for the news models. From sub-

section 3.1 news innovations enter in the true underlying process peeling off

information as preliminary figures become more precise. Therefore, the true

underlying process has an innovation standard deviation smaller than under

noise. The estimated standard deviation under news is 1.51 = eθε while the

estimated standard deviation under noise is 1.81 = eθε which is, in turn,

close to the standard deviation under news + noise. See tables 3 and 4.

There is strong evidence in favor of the presence of news. The hypothesis

that news innovations are not significant is equivalent to the null of zero news

innovation variance which is rejected in table 2.
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Pure News News + Spill-overs

Parameter Estimate Std-Err Estimate Std-Err

ϕ1 0.8237 0.1051 0.8278 0.1042
θ1 -0.1865 0.2150 -0.1906 0.2144
ρν 0.0411 0.0862
θε 0.4127 0.1540 0.4082 0.1539
θν,1 -1.6253 0.1313 -1.6237 0.1314
θν,2 -1.7431 0.1313 -1.7495 0.1318
θν,3 -1.0057 0.1312 -1.0014 0.1316
θν,4 -0.6943 0.1311 -0.6946 0.1312
θν,5 0.0053 0.1788 0.0111 0.1797

log-likelihood 200.6627 200.7768
AIC -385.3254 -383.5535
BIC -347.4486 -340.9422

Table 2: Maximum Likelihood Estimation of News Models

Table 3 contains the estimation results for the noise models. There is

strong evidence in favor of the presence of noise in measurement errors. The

hypothesis of no significant noise effects is equivalent to the null of zero

noise innovation standard deviation which is clearly rejected from table 3.

Moreover, the estimated standard deviations of the noise innovations eθζ,j

are smaller than the corresponding standard deviations of the news innova-

tions. This result might suggest that news innovations are more important

than noise innovations in the explanation of the dynamics of measurement

errors.

Table 4 contains the estimation results for the news + noise models.

Because of the presence of news the true underlying process innovation has

an estimated standard deviation of 1.48 = eθε , close to those in Table 2.

There is strong evidence in favor of the presence of both, news and

noise, in measurement errors. The null of no significant news and noise

effects is clearly rejected from table 4. However, news innovations might
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Pure Noise Noise + Spill-overs

Parameter Estimate Std-Err Estimate Std-Err

ϕ1 0.8672 0.1002 0.8670 0.1003
θ1 -0.2334 0.1892 -0.2328 0.1893
ρζ -0.1093 0.0854
θε 0.5883 0.1335 0.5885 0.1337
θζ,1 -0.4128 0.1337 -0.4235 0.1339
θζ,2 -0.4071 0.1333 -0.4147 0.1334
θζ,3 -0.3589 0.1337 -0.3692 0.1338
θζ,4 -0.2885 0.1338 -0.2883 0.1339
θζ,5 -0.2214 0.1333 -0.2258 0.1334

log-likelihood 85.2595 86.0720
AIC -154.5189 -154.1440
BIC -116.6422 -111.5326

Table 3: Maximum Likelihood Estimation of Noise Models

be relatively more important than noise innovations in the explanation of

the dynamics of measurement errors. The estimated standard deviation of

news innovations is more than 200 times higher than the estimated standard

deviation of noise innovations for the first and second data releases. For the

remaining three releases the standard deviations are similar. Therefore news

innovations dominate during the first two releases but after the third release

noise innovations become important.

An over all comparison of the models suggests that models in which

news are present are preferred. The highest log-likelihood and smaller AIC

arise in the model that includes news and noise but no spill-over effects.

However, the BIC information criteria minimizes for the pure noise model

without spill-overs. Since noise innovations become important after the third

release, noise plays an important role in the determination of the dynamics of

measurement errors. These results suggest that a model that includes both

news and noise is appropriate to now-cast and forecast the true Colombian
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News + Noise News + Noise + Spill-overs

Parameter Estimate Std-Err Estimate Std-Err

ϕ1 0.8496 0.0997 0.8538 0.0985
θ1 -0.1997 0.2045 -0.2031 0.2037
ρζ 0.0653 0.1345
θε 0.4051 0.1494 0.3982 0.1496
θν,1 -1.6254 0.1313 -1.6218 0.1318
θν,2 -3.4461 4.9454 -3.0263 2.0690
θν,3 -1.5077 0.3311 -1.5162 0.3299
θν,4 -6.7610 333.5675 -6.4329 28.6912
θν,5 -0.1600 0.1846 -0.1483 0.1867
θζ,1 -7.7569 168.4589 -7.4627 16.7954
θζ,2 -8.9184 227.1944 -8.8269 85.2251
θζ,3 -1.7598 0.2143 -1.7842 0.2206
θζ,4 -1.4323 0.2808 -1.4371 0.2787
θζ,5 -0.7941 0.1500 -0.7980 0.1501

log-likelihood 208.0583 208.1758
AIC -390.1166 -388.3516
BIC -328.5669 -322.0673

Table 4: Maximum Likelihood Estimation of News + Noise Models

growth.

4.3.2 The Final Model

In this sub-section a last feature is included to obtain the final version of the

model. This feature relates to the fact that partial information is observed

during the last l − 1 = 4 quarters of the sample. At the last period of the

sample, t = T , only Y T+1
T is observed, at t = T − 1 only Y T

T−1 and Y T+1
T−1 are

available, at t = T − 2 three preliminary releases, Y T−1
T−2 , Y

T
T−2 and Y T+1

T−2 ,

are available, and at t = T − 3 four preliminary releases, Y T−2
T−3 , Y

T−1
T−3 , Y

T
T−3

and Y T+1
T−3 , are available. For t = M + 1, . . . , T − 1 the whole vector Y1t is

observed, and prior to that date Ỹt is also observed.

In order to include the last four observations of the sample, the obser-
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vation vector becomes

Yt =



[
Ỹt
Y1,t

]
if 1 ≤ t ≤ M

Y1,t if M < t ≤ T − 4 Y t+1
t
...

Y t+4
t

 if t = T − 3

 Y t+1
t

Y t+2
t

Y t+3
t

 if t = T − 2[
Y t+1
t

Y t+2
t

]
if t = T − 1[

Y t+1
t

]
if t = T

The estimation results for this model are shown in Table 5. Convergence

to a maximum is achieved in just 7 iterations starting at the parameter

estimates of table 4. The results of table 5 summarize as follows.

News + Noise

Parameter Estimate Std-Err

ϕ1 0.7628 0.0934
θε 0.4339 0.1379
θν,1 -1.5358 0.1270
θν,2 -3.2823 4.2699
θν,3 -1.5178 0.3426
θν,4 -7.0173 570.8885
θν,5 -0.1682 0.1825
θζ,1 -8.1420 116.1066
θζ,2 -9.2174 479.9131
θζ,3 -1.7629 0.2403
θζ,4 -1.4256 0.2820
θζ,5 -0.7754 0.1524

log-likelihood 209.2037
AIC -394.4074
BIC -335.2298

Table 5: Maximum Likelihood Estimation of News + Noise Final Model
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The last four observations are very informative with respect to the per-

sistence of the true growth. The AR(1) parameter estimate in Table 4 is

0.85, which reduces to 0.76 in Table 5 after introducing the last four ob-

servations. This might be due to the fact that the last four observations

contain information of a rapid recovery from the world financial breakdown.

The persistence estimate of Table 5 agrees with the estimation results of an

ARMA model for the true growth not shown in this paper.

In addition, the last four observations increase the innovation variance

of the true underlying process. The standard deviation estimate of the

innovations in Table 4 is e0.4 while the innovation standard deviation in

Table 5 is e0.43. However, the rest of the parameters ar of similar value and

significance.

Finally, the AIC and BIC of Table 5 are smaller than those of the

second column in Table 4. Although it may suggest that the latest model

is better, these results are not totally comparable as the later miss the last

four observations.

Figure 6 displays the preliminary and definitive data along with the

corresponding now-casts of the Colombian growth. Table 6 contains the

preliminary data and their corresponding now-casts for the period of time

when no definitive data is available. This Table contains the difference

between the now-cast and the first data release, Now-cast-Y t+1
t , in the last

column.

Now-casts are always above the first data release. The last column of

Table 6 shows that the bias of the first release ranges from 0.38% at 2008Q4

to 1.51% at 2007Q2. On average, preliminary figures are 0.87% below the

true underlying growth. See Table 1 also.

The last column of Table 6 reveals rich dynamics resulting from noise
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Figure 6: Observed Data and Now-casts of Year to Year growth of the
Colombian Quarterly GDP

innovations.

Figure 7 shows the optimal now-cast of the GDP, its confidence interval

and the first data release, Y t+1
t , for each period of time t. The standard

deviation of the now-cast is small, on average 0.29%, which provides a 95%

confidence interval 1.14% wide. The first data release falls into the confi-

dence interval just two times, 2008Q4 and 2009Q3. The rest of the time the

first data release falls below the confidence interval. This result shows that

the first data release has a statistically significant downward bias between

0.57% and 1.14%, on average.

5 Final Remarks

In several situations statistical bureaus reset the start of subsequent data re-

leases with each benchmark methodology change. Under this circumstances

the last vintage previous to the reset date contains figures that might be

taken as true. In this case the data release process resembles Figure 1.
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Date Now- Y t+1
t Y t+2

t Y t+3
t Y t+4

t Y t+5
t Now-

cast cast-Y t+1
t

2006Q2 6.70 5.96 6.06 6.06 5.96 5.79 0.74
2006Q3 8.38 7.68 7.72 7.62 7.62 7.66 0.70
2006Q4 9.07 7.97 8.36 8.30 8.35 8.40 1.10
2007Q1 9.01 7.98 8.11 8.37 8.29 9.07 1.03
2007Q2 8.38 6.87 7.06 6.85 8.36 7.74 1.51
2007Q3 7.35 6.65 6.81 6.94 6.56 6.16 0.70
2007Q4 9.00 8.14 8.41 8.40 8.14 8.34 0.86
2008Q1 5.30 4.10 4.67 4.79 4.49 4.54 1.19
2008Q2 4.69 3.76 3.86 4.28 4.04 4.15 0.92
2008Q3 3.82 3.10 3.15 3.50 3.03 3.11 0.71
2008Q4 -0.71 -1.10 -1.40 -1.48 -1.43 -1.42 0.39
2009Q1 0.27 -0.67 -0.42 -0.50 -0.43 0.94
2009Q2 0.20 -0.65 -0.54 -0.35 0.85
2009Q3 0.47 0.06 -0.26 0.41
2009Q4 3.87 2.91 0.96

Table 6: Now-casts of the Year to Year Growth of the Quarterly Colombian
GDP

Moreover, it has also been observed that that preliminary releases are bi-

ased estimates of the true growth. A dynamic linear model that fits this

behavior was proposed in this paper.

The model presented in this paper extends Jacobs & Van Norden’s [13]

in two ways. First, the “true” data series is observable up to a fixed period

of time M . And second, preliminary figures might be biased estimates of

the true series. Otherwise, the model follows Jacobs & Van Norden’s [13]

so their gains are extended through the new assumptions. These assump-

tions represent the data release process more realistically under particular

circumstances, and improve the overall identification of the model.

By assuming that the true series is observed up to a fixed time M the

overall identification of the model improves. This results from the availabil-

ity of true data to identify the dynamics of the true underlying process, and
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Figure 7: Now-casts of Year to Year Growth of the Colombian Quarterly
GDP, Confidence Interval and the First Data Release

because mean measurement errors are also identified.

An application to the year to year growth of the quarterly Colombian

GDP reveals features of the Colombian GDP release process that have an

important effect on the use of these figures for policy purposes. First, pre-

liminary growth figures under-estimate the true ones. And second, mea-

surement errors contain noise. More precisely, the downward bias of the five

more recent releases are 0.96%, 0.73%, 0.73%, 0.67% and 0.77% respectively.

Moreover, the first data release has a statistically significant downward bias

between 0.57% and 1.14%, on average. Therefore measurement errors are

predictable from the information available at the data release.

Similar downward biases were found in Franses [7], Table 1 and Garratt

& Vahey [8].

The models estimated in this paper serve the following purposes; (i)

describe the dynamics of the Colombian growth, (ii) optimal inference and

forecasting of the true growth, and (iii) trend-cycle decomposition of the
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GDP, all in a setting of data revisions and delays.
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