Motivation	Model	Benchmarks	Regulation	Conclusions

How does macroprudential regulation change bank credit supply?¹

Anil Kashyap Dimitrios Tsomocos Alexandros Vardoulakis

11th Annual Conference of the Special Edition of ESPE Journal

October 2014, Banco de la Republica

¹Disclaimer: The views expressed are those of the authors and do not necessarily represent those of the Federal Reserve Board of Governors or anyone in the Federal Reserve System.

Motivation	Model	Benchmarks	Regulation	Conclusions

Outline

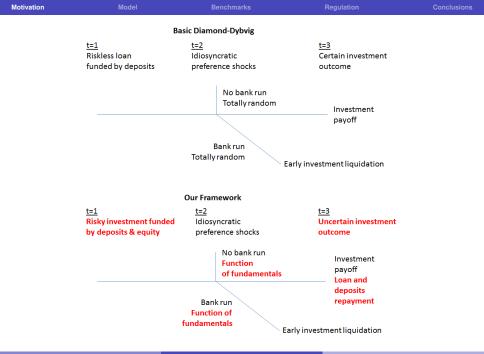
Motivation

2 Model

3 Benchmarks

5 Conclusions

Motivation	Model	Benchmarks	Regulation	Conclusions
Motivation				


- Propose a model where the banking sector has the following functions:
 - Provides liquidity insurance
 - 2 Enhances sharing of aggregate risk
 - Expands credit extension to the real economy
- Study the externalities emerging from intermediation and examine regulation to mitigate their effect
- We modify the classic Diamond-Dybvig model to address these issues

Our modifications to DD

- Assume that runs depend on fundamentals and are not just due to sunspots
- Assume loans are made to fund a risky technology
- Assume the banks and the borrowers are subject to limited liability

Consequences of these modifications:

- Runs create a risk that can result in under-investment
- Limited liability creates an incentive for excessive risk-taking

Motivation	Model	Benchmarks	Regulation	
The Agents				

- A continuum of poor entrepreneurs (P) who owns the rights to a project but must borrow to implement it
- A continuum of rich savers (R) who can invest in a riskless asset, or make a bank deposit, or buy bank equity
 - Idiosyncratic liquidity shocks in intermediate period to consume early or late
 - Proportion of early consumers fixed, but shocks are private information and cannot be hedged
- A continuum of bankers (B) who has some trapped equity that can only by used for lending
 - B can also raise funds from R, to invest in P and the riskless asset

Motivation	Model	Benchmarks	Regulation	Conclusions

Contract restrictions

- No short sales (against either P or B)
- Limited liability for B and P
- B acts like a "Lucas household": one side of her brain manages the assets of the bank, the other side **independently** decides what to do with her wealth
- Market incompleteness means we cannot decentralize a planner's problem
- We calibrate so that P defaults in the medium and low states, and B defaults on deposits in the low state

Motivation	Model	Benchmarks	Regulation	Conclusions

P's Optimization problem

$$\max \bar{U}^{P} = U^{P}\left(c_{1}^{P}\right) + q \cdot \sum_{s} \omega_{3s} U^{P}\left(c_{3s}^{P,run}\right) + (1-q)\left[\sum_{s} \omega_{3s} U^{P}\left(c_{3s}^{P,no-run}\right)\right]$$

subject to the following constraints:

$$\begin{split} c_{1}^{P} + l^{P} &\leq e_{1}^{P} \\ c_{3s}^{P,\textit{no-run}} &\leq \max \left[A_{3s} F\left(l + l^{P}\right) - l(1 + r^{l}), 0 \right] + e_{3s}^{P} \\ c_{3s}^{P,\textit{run}} &\leq \xi \cdot l^{P} + e_{3s}^{P} \end{split}$$

Motivation	Model	Benchmarks	Regulation	Conclusion
R's Optimi	zation prob	lem		
	$\bar{U}^{R} = U^{R} \left(c_{1}^{R} \right)$	$+ q \left[heta \cdot U^{R} \left(c^{R, run, paid}_{2/3} ight) + (1 - $	$(\theta) U^{R} \left(c_{2/3}^{R, run, unpaid} \right) \right]$	
	+(1-q)	$D\left[\delta \cdot U^{R}\left(c_{2}^{R,i,no\text{-run}} ight)+\left(1-\delta ight) ight) ight.$	$\cdot \sum_{s} \omega_{3s} U^{R} \left(c_{3s}^{R,p,no-run} ight) ight]$	
subject to the	following constr	aints:		
		$c_1^R + P_{eq}^R x_{eq}^R + D^R + LIQ$	$e_1^R \le e_1^R$	
<u>No bank-run</u>				
	If impatient:	$c_2^{R,i,no\text{-}run} \leq (1+r_2^D)D^R +$	$LIQ_1^R + P_{sec}x_{eq}^R + e_2^R$	
		$P_{sec}x_{sec}^R + LIQ_2^R \leq LIQ_1^R +$	$P_{sec}x_{eq}^R + e_2^R$	
	If patient:	$c^{R,p,\textit{no-run}}_{3s} \leq x^R_{sec} DPS_{3s} +$	$V^D_{3s}D^R(1+r^D_3)+LIQ^R_2$	

 DPS_{3s} are the dividends per share from holding equity in the bank

Bank-run

$$\begin{array}{ll} \mbox{If lucky:} & c_{2/3}^{R,run,paid} \leq (1+r_2^D)D^R + LIQ_1^R + e_2^R \\ \\ \mbox{If unlucky:} & c_{2/3}^{R,run,unpaid} \leq LIQ_1^R + e_2^R \end{array}$$

Motivation	Model	Benchmarks	Regulation	Conclusions
B's Optimiz	ation problem			
max $ar{U}^B$	$= U^{B}\left(c_{1}^{B}\right) + q \cdot \left[\theta \sum_{s} \omega\right]$	$U_{3s}U^B\left(c_{3s}^{B,run,paid}\right) + (1-\theta)$	$\sum_{s}\omega_{3s}U^{B}\left(c_{3s}^{B,run,unpaid} ight)$]
	$+(1-q)\left[\sum_{s}$	$\left[\omega_{3s} U_{3s}^{B} \left(c_{3s}^{B, no-run} \right) \right]$		
subject to the fo	ollowing constraints:	-		
(t	= 1)			
Μ	anaging own wealth:	$c_1^B + P_{eq}^B x_{eq}^B + D^B + Llo$	$\mathcal{Q}^{\mathcal{B}}_1 \leq e^{\mathcal{B}}_1$	
Μ	anaging the bank:	$+ LIQ_1 \leq P^B_{eq} x^B_{eq} + D^B +$	$P^B_{eq} x^R_{eq} + D^R + E^B$	
(t	= 2, <i>no-run</i>)			
Μ	anaging own wealth:	$P_{sec} x^B_{sec} + LIQ^B_2 \leq LIQ^B_1$	$^{3} + P_{sec} x_{eq}^{B}$	
Μ	anaging the bank: δ	$\cdot D^R(1+r_2^D)+LIQ_2 \leq L$	IQ ₁	
(t	= 2, <i>run</i>)			
S	erve θ % of depositors:	$\theta \cdot D^R(1+r_2^D) = LIQ_1$	$+ \xi \cdot I$	
				► Timeline

$$\begin{aligned} &(t = 3, no-run) \\ &c_{3s}^{B, no-run} \leq \frac{E^B + x_{sec}^B}{E^B + x_{eq}^B + x_{eq}^B} \max \left[V_{3s}^I I(1 + r^I) + LIQ_2 - \left((1 - \delta) D^R + D^B \right) (1 + r_3^D), 0 \right] \\ &+ V_{3s}^D D^B (1 + r_3^D) + LIQ_2^B + e_{3s}^B \\ &(t = 3, run) \\ &c_{3s}^{B, run, paid} \leq D^B (1 + r_2^D) + LIQ_1^B + e_{3s}^B \\ &c_{3s}^{B, run, unpaid} \leq LIQ_1^B + e_{3s}^B \\ & \text{where} \quad V_{3s}^D = \min \left[1, \frac{V_{3s}^I I(1 + r^I) + LIQ_2}{((1 - \delta) D^R + D^B) (1 + r_3^D)} \right] \end{aligned}$$

- We choose e_1^B low enough such that *B* does not choose to deposit in the bank, $D^B = 0$, or hoard liquidity, $LIQ_1^B = 0$
- Finally, the incentive compatibility constraint such that patient depositors prefer to wait in normal times

$$\sum_{s} \omega_{3s} U^{R} \left(x_{sec}^{R} \left(DPS_{3s} - P_{sec} \right) + V_{3s}^{D} D^{R} (1 + r_{3}^{D}) + LIQ_{1}^{R} + P_{sec} x_{eq}^{R} + e_{2}^{R} \right) \geq \sum_{s} \omega_{3s} U^{R} \left(x_{sec}^{R'} \left(DPS_{3s} - P_{sec} \right) + D^{R} (1 + r_{2}^{D}) + LIQ_{1}^{R} + P_{sec} x_{eq}^{R} + e_{2}^{R} \right)$$

► Timeline

Generic properties of the competitive equilibrium

- P will not issue equity; R prefers equity in B to equity in P
- B never chooses to buy more equity in the bank
 - No gain from providing more insurance to R
- B ignores the effect of defaults on depositors due to limited liability: Creates a motive for excessive risk-taking
- Excessive leverage increases the probability of a **run**, which makes both deposits and equity less attractive to R: Creates the possibility of under-investment
- Over-investment or under-investment (relative to a constrained planner) are both possible in equilibrium

Competitive Equilibrium

	Competitive Equilibrium
Investment	2.55
Capital Ratio	0.15
Liquidity Ratio	0.21
Probability of bank-run	0.11
P's utility	-1.70
R's utility	-0.21
B's utility	-1.83

What is the Role of the Bank?

- The bank provides three services:
 - Provides liquidity insurance for impatient consumers, since agents cannot hedge their idiosyncratic liquidity shocks ex-ante
 - Creates both debt and equity claims potentially improving the saving options for R, since agents cannot fully hedge period 3 aggregate uncertainty
 - Second strength and the second sec
- Financial intermediation improves risk-sharing and expands investment, but creates the potential for risk shifting by B & P due to limited liability
- Two externalities:
 - B fails to recognize that taking more risk will raise its cost of funding
 - 2 B does not internalize how her risk taking changes the odds of a run

Modigliani-Miller

Motivation	Model	Benchmarks	Regulation	

Individually optimal deposit taking and lending by the bank

• The first-order condition with respect to lending by the bank is:

$$-\psi_1^B + \frac{E^B + x_{sec}^B}{E^B + x_{eq}^B + x_{eq}^B} \sum_{s \notin s^D} \lambda_{3s}^{B,no\text{-run}} V_{3s}^{\prime} (1 + r^{\prime}) = 0,$$

• The first-order condition with respect to deposit taking by the bank is:

$$\psi_{1}^{B}\left(1-\delta(1+r_{2}^{D})\right)-(1-\delta)\frac{E^{B}+x_{sec}^{B}}{E^{B}+x_{eq}^{R}+x_{eq}^{B}}\sum_{s\notin s^{D}}\lambda_{3s}^{B,no-run}(1+r_{3}^{D})=0.$$

Combining these two optimality conditions we get:

$$\sum_{s \notin s^{D}} (1-q) \cdot \omega_{3s} U^{B'}(c_{3s}^{B,no\text{-run}}) \left[V_{3s}^{\prime}(1+r^{\prime}) - \frac{1-\delta}{1-\delta(1+r_{2}^{D})}(1+r_{3}^{D}) \right] = 0$$

Motivation Model Benchmarks Regulation	
Externality from risk-taking	

$$\sum_{s \notin s^{D}} (1-q) \cdot \omega_{3s} U^{B'}(c_{3s}^{B,no-run}) \left[V_{3s}'(1+r') - \frac{1-\delta}{1-\delta(1+r_{2}^{D})}(1+r_{3}^{D}) \right] = 0$$

- This equation implies that the banks takes on sufficient risk and leverage so that it makes losses in the medium risk state of the world
- This risk-shifting takes place because the banks ignore the consequences of its investment decision in the bankruptcy state $(V'_{3b}(1 + r') (1 + r^D))$
- But, *R* takes this into consideration and charges a higher deposit rate:

$$-\lambda_{1}^{R} + \lambda_{2}^{R,i,no\text{-}run}(1+r_{2}^{D}) + \lambda_{2}^{R,run,paid}(1+r_{2}^{D}) + \sum_{s}\lambda_{3s}^{R,p,no\text{-}run}V_{3s}^{D}(1+r_{3}^{D}) = 0$$

Motivation	Model	Benchmarks	Regulation	Conclusions
Externality from	hank-runs			

- Insight from Goldstein-Pauzner (2005) Global Games approach to bank-runs:
 - The probability of a bank run is a decreasing function of the proportion of depositors that can be sequentially served early before the bank goes bankrupt, i.e the value of bank assets at time 2 relative to the total amount of deposits owed if everyone runs
- We assume that the probability of a bank-run is

$$q = \left(\max\left[1 - \frac{LIQ_1 + \xi \cdot I}{D^R(1 + r_2^D)}, 0\right]\right)^2 = \left(\max\left[1 - \frac{LR + \xi}{(1 + LR - CR)(1 + r_2^D)}, 0\right]\right)^2, \text{ where } LR = \frac{LIQ_1}{I}, CR = \frac{EQ}{I} \text{ and } \xi \text{ is the liquidation value of risky investment}$$

- Under this specification q decreases for higher liquidity and capital ratios, higher ξ and lower r_2^D
- Note that for $\frac{LIQ_1+\xi \cdot I}{D^R(1+r_2^D)} \ge 1$, q is always zero irrespective of the assumed functional form

Global Games

Constrained Social Planner

Internalizes

$$q = \left(\max\left[1 - \frac{LIQ_1 + \xi \cdot I}{D^R(1 + r_2^D)}, 0 \right] \right)^2$$

• Recognizes that the equation for r_3^D :

$$-\lambda_{1}^{R} + \lambda_{2}^{R,i,no-run}(1+r_{2}^{D}) + \lambda_{2}^{R,run,paid}(1+r_{2}^{D}) + \sum_{s} \lambda_{3s}^{R,p,no-run} V_{3s}^{D}(1+r_{3}^{D}) = 0,$$

and the combined optimality conditions for deposit taking and lending by the bank:

$$\sum_{s \notin s^{D}} (1-q) \cdot \omega_{3s} U^{B'}(c^{B,\textit{no-run}}_{3s}) \left[V'_{3s}(1+r') - \frac{1-\delta}{1-\delta(1+r^{D}_{2})}(1+r^{D}_{3}) \right] \geq 0,$$

are jointly determined.

Extreme regulatory alternative: Unlimited Liability

- Bounds lending to P to be below his endowment ("natural debt limit")
- Bounds deposits to be less than P's repayment and B's endowment
- Greatly reduces risk-taking, shrinking lending to P, leaving him worse off
- Taking away the default option can make B worse off, though she gains from eliminating the run
- R gets safer savings, but earns a much lower return. Also, his ability to smooth consumption is greatly reduced and he is typically worse off

Limited vs. Unlimited Liability

	Competitive	Unlimited
	Equilibrium	Liability
Investment	2.55	0.31
Capital Ratio	0.15	0.65
Liquidity Ratio	0.21	0.09
Probability of bank-run	0.11	0.00
P's utility	-1.70	-1.72
R's utility	-0.21	-0.21
B's utility	-1.83	-1.85

Motivation	Model	Benchmarks	Regulation	


Calibrated example with over-investment ($w^P = 0.35$, $w^R = 0.35$)

	Competitive	Unlimited	Constrained
	Equilibrium	Liability	Planner
Investment	2.55	0.31	2.49
Capital Ratio	0.15	0.65	0.49
Liquidity Ratio	0.21	0.09	0.13
Probability of bank-run	0.11	0.00	0.00
P's utility	-1.70	-1.72	-1.67
R's utility	-0.21	-0.21	-0.20
B's utility	-1.83	-1.85	-1.80
Social Welfare	-1.00	-1.02	-0.98

Motivation	Model	Benchmarks	Regulation	Conclusions

Planning outcomes

Table: % Change in Social Welfare: Constrained Planner vs. Competitive Equilibrium

	Benchmarks	
Run risk		

Table: Percentage points difference in the probability of a bank-run: Constrained Planner vs. Competitive Equilibrium

					и	,R			
		0.100	0.200	0.300	0.400	0.500	0.600	0.700	0.800
	0.100	-7.30%	-7.47%	-7.65%	-7.81%	-10.86%	-10.93%	-10.93%	-10.93%
	0.200	-6.81%	-6.97%	-7.14%	-10.84%	-10.92%	-10.93%	-10.93%	-
	0.300	-6.30%	-6.46%	-6.61%	-10.92%	-10.93%	-10.93%	-	-
wP	0.400	-5.78%	-5.93%	-10.91%	-10.93%	-10.93%	-	-	-
	0.500	-5.25%	-10.91%	-10.93%	-10.93%	-	-	-	-
	0.600	-10.90%	-10.93%	-10.93%	-	-	-	-	-
	0.700	-10.93%	-10.93%	-	-	-	-	-	-
	0.800	-10.93%	-	-	-	-	-	-	-

Planner's preferred capital ratios

Table: Percentage points difference in Capital Ratios: Constrained Planner vs. Competitive Equilibrium

	w ^R								
		0.100	0.200	0.300	0.400	0.500	0.600	0.700	0.800
	0.100	-1.77%	-1.53%	-1.27%	-1.04%	33.43%	34.66%	35.23%	35.23%
	0.200	-2.35%	-2.17%	-1.96%	33.24%	34.55%	35.23%	35.23%	-
	0.300	-2.87%	-2.72%	-2.57%	34.43%	35.23%	35.23%	-	-
wP	0.400	-3.34%	-3.21%	34.30%	35.23%	35.23%	-	-	-
	0.500	-3.75%	34.16%	35.23%	35.23%	-	-	-	-
	0.600	34.00%	35.23%	35.23%	-	-	-	-	-
	0.700	35.23%	35.23%	-	-	-	-	-	-
	0.800	35.23%	-	-	-	-	-	-	-

Planner's preferred liquidity ratios

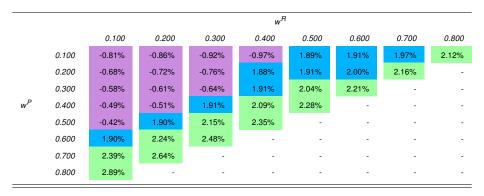
Table: Percentage points difference in Liquidity Ratios: Constrained Planner vs. Competitive Equilibrium

	w ^R								
		0.100	0.200	0.300	0.400	0.500	0.600	0.700	0.800
	0.100	85.66%	89.42%	93.70%	97.64%	-8.36%	-8.66%	-8.81%	-8.81%
	0.200	76.10%	79.12%	82.47%	-8.31%	-8.64%	-8.81%	-8.81%	-
	0.300	67.60%	70.07%	72.65%	-8.61%	-8.81%	-8.81%	-	-
wP	0.400	60.00%	62.06%	-8.58%	-8.81%	-8.81%	-	-	-
	0.500	53.18%	-8.54%	-8.81%	-8.81%	-	-	-	-
	0.600	-8.50%	-8.81%	-8.81%	-	-	-	-	-
	0.700	-8.81%	-8.81%	-	-	-	-	-	-
	0.800	-8.81%	-	-	-	-	-	-	-

Intermediation spread

Over- versus under-investment

Table: % Change in Investment: Constrained Planner vs. Competitive Equilibrium


					w ^R				
		0.100	0.200	0.300	0.400	0.500	0.600	0.700	0.800
	0.100	-39.66%	-40.71%	-41.87%	-42.86%	-2.84%	-2.59%	-1.18%	2.28%
	0.200	-36.80%	-37.73%	-38.73%	-2.91%	-2.62%	-0.50%	3.32%	-
	0.300	-34.04%	-34.86%	-35.69%	-2.64%	0.36%	4.63%	-	-
wP	0.400	-31.36%	-32.10%	-2.68%	1.50%	6.32%	-	-	-
	0.500	-28.77%	-2.71%	3.07%	8.44%	-	-	-	-
	0.600	-2.74%	5.33%	11.74%	-	-	-	-	-
	0.700	9.15%	16.38%	-	-	-	-	-	-
	0.800	23.89%	-	-	-	-	-	-	-

Intermediation spread

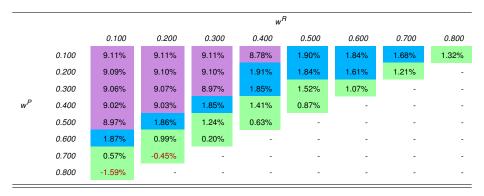
P's Welfare Under Different Planning Allocations

Table: % Change in P's Welfare: Constrained Planner vs. Competitive Equilibrium

Deposit rate

	Motivation Model Benchmarks Regulation Conclus	
--	--	--

R's Welfare Under Different Planning Allocations


Table: % Change in R's Welfare: Constrained Planner vs. Competitive Equilibrium

					w ^R				
		0.100	0.200	0.300	0.400	0.500	0.600	0.700	0.800
	0.100	-4.30%	-4.28%	-4.26%	-3.82%	2.20%	2.24%	2.28%	2.34%
	0.200	-4.37%	-4.35%	-4.32%	2.26%	2.23%	2.30%	2.34%	-
	0.300	-4.44%	-4.42%	-4.25%	2.23%	2.31%	2.35%	-	-
wP	0.400	-4.52%	-4.49%	2.23%	2.33%	2.34%	-	-	-
	0.500	-4.60%	2.22%	2.34%	2.31%	-	-	-	-
	0.600	2.22%	2.34%	2.24%	-	-	-	-	-
	0.700	2.24%	2.06%	-	-	-	-	-	-
	0.800	1.53%	-	-	-	-	-	-	-

Deposit rate

B's Welfare Under Different Planning Allocations

Table: % Change in B's Welfare: Constrained Planner vs. Competitive Equilibrium

Deposit rate

Intermediation spread

Summary from Planner's Allocations

Three basic configurations:

- Raise liquidity to control a run without preventing the bank from gambling (purple)
- Paise bank equity to control a run and reduce investment to manage excess risk-taking (blue)
- 8 Raise bank equity to control a run and raise investment to help P or R (green)

Motivation	Model	Benchmarks	Regulation	Conclusions
------------	-------	------------	------------	-------------

Regulatory tools

- Capital requirements
- Liquidity requirements
- Deposit insurance
- Loan to value requirements
- Dividend taxes
- Optimal combinations

Motivation	Model	Benchmarks	Regulation	Conclusions
Capital Reg	ulation			

- More stable funding decreases the probability of a bank-run
- Force lower leverage, so the bank cannot fully exploit its limited liability
- But, fewer deposits require less liquidity to serve early withdrawals \rightarrow creates extra lending capacity

	Competitive Equilibrium	Capital Regulation
1	2.548	2.782
CR	14.77%	50.00%
LR	21.31%	12.50%
q	10.93%	0.00%
U^P	-1.69675	-1.65626
U^R	-0.20559	-0.20097
U ^B	-1.83416	-1.82463

			Regulation	
Higher requ	uired liquidity			
 Substitut 	es safe assets for	risky ones, but does	not necessarily redu	ce the risk of
a run: Tł	ne probability of a	run can be written as	$5 \mathbf{q} = \left(1 - \delta \frac{1 + \xi \frac{1}{LR}}{1 - \frac{L/Q_2}{LQ_1}}\right)^2$	<u>.</u>
			and the bank does no	
required	rate of return			

• The bank will cut lending to preserve its rate of return

	Competitive Equilibrium	Liquidity Regulation
1	2.548	2.419
CR	14.77%	12.86%
LR	21.31%	28.31%
q	10.93%	10.35%
U^P	-1.69675	-1.69825
U^R	-0.20559	-0.20499
U^B	-1.83416	-1.83654

Motivation	Model	Benchmarks	Regulation	
Deposit Insu	irance			
Consider	a policy that gua	arantees deposit repay	ment even in states	that the bank
is not solv	ent and funds th	nis by levying lump-sun	n taxes	
 Zero prob 	ability of a bank	run, but also eliminate	es market discipline	for excessive

• Still a Pareto improvement over the competitive equilibrium

risk-taking

	Competitive Equilibrium	Deposit Insurance
1	2.548	2.815
CR	14.77%	10.49%
LR	21.31%	22.38%
q	10.93%	0.00%
U^P	-1.69675	-1.65545
U^R	-0.20559	-0.20271
U^B	-1.83416	-1.82042

Motivation	Model	Benchmarks	R	Regulation	
Lower loar	n to value requi	rements			
_ ,					

- Forces P to have some skin in the game, reduces the amount he can borrow
- Raises loan and deposit repayments in the medium and bad state
- B ignores the effect on the bad state
- R increases deposits
- B substitutes toward safe assets, but not enough to reduce the run probability

	Competitive Equilibrium	LTV Regulation
1	2.548	2.505
CR	14.77%	7.98%
LR	21.31%	23.00%
LTV	100%	99.30%
q	10.93%	13.34%
U^P	-1.69675	-1.70165
U ^R	-0.20559	-0.20858
U^B	-1.83416	-1.84230

Motivation	Model	Benchmarks	Regulation	

Dividend taxes

- Pushes R to reduce equity purchase and increase deposits (pushing down the deposit rate)
- Allows B to gamble more
- Does not help with the run risk

	Competitive Equilibrium	Dividend Tax
1	2.548	2.503
CR	14.77%	7.98%
LR	21.31%	23.00%
$ au_{\textit{Div}}$	0%	45%
q	10.93%	13.34%
U^P	-1.69675	-1.70542
U ^R	-0.20559	-0.20764
U ^B	-1.83416	-1.82595

Optimal Regulation

Three combinations depending on the planner's preferences:

- Liquidity regulation, dividend tax and tax on the safe asset
- Capital regulation, dividend tax and tax on the safe asset
 - Alternatively, capital and liquidity regulations combined
- Capital regulation and deposit insurance

Motivation	Model	Benchmarks	Regulation	

Liquidity regulation, dividend tax and tax on the safe asset

Table: Optimal Regulation for $w^P = w^R = 0.2$, $w^B = 0.6$

	Competitive	Constrained	Liquidity	Optimal
	Equilibrium	Planner	Regulation	Mix
1	2.548	1.587	1.776	1.587
D^R	2.715	2.981	2.869	2.981
x_{eq}^R	0.176	0.000	0.098	0.000
LIQ ₁	0.543	1.594	1.391	1.594
LIQ ₂ /LIQ ₁	0.000	0.626	0.587	0.626
r ^d	0.570	0.047	0.526	0.047
q	0.109	0.040	0.042	0.040
CR	0.148	0.126	0.168	0.126
LR	0.213	1.004	0.783	1.004
τ_{Div}	-	-	-	0.358
τLIQ	-	-	-	0.018
U ^P	-1.697	-1.709	-1.701	-1.709
U ^R	-0.206	-0.215	-0.202	-0.215
U ^B	-1.834	-1.667	-1.835	-1.667
U ^{sp}	-1.000	-0.956	-0.997	-0.956

Motivation	Model	Benchmarks	Regulation	

Capital regulation and dividend tax vs. capital and liquidity regulations

Table: Optimal Regulation for $w^P = 0.2$, $w^R = 0.6$, $w^B = 0.2$

	Competitive	Constrained	Capital	Optimal	Capital & Liquidity
	Equilibrium	Planner	Regulation	Mix	Regulation
1	2.548	2.536	2.782	2.536	2.435
D^R	2.715	1.585	1.739	1.585	1.936
x ^R _{eq}	0.176	1.068	1.191	1.068	1.017
LIQ1	0.543	0.317	0.348	0.317	0.718
LIQ ₂ /LIQ ₁	0.000	0.000	0.000	0.000	0.461
r ^d	0.570	0.137	0.464	0.137	0.473
q	0.109	0.000	0.000	0.000	0.000
CR	0.148	0.500	0.500	0.500	0.500
LR	0.213	0.125	0.125	0.125	0.295
$ au_{\textit{Div}}$	-	-	-	0.439	0.000
$ au_{LIQ}$	-	-	-	0.487	0.000
U^P	-1.697	-1.663	-1.656	-1.663	-1.666
U ^R	-0.206	-0.201	-0.201	-0.201	-0.200
U ^B	-1.834	-1.805	-1.825	-1.805	-1.825
U ^{sp}	-1.000	-0.979	-0.982	-0.979	-0.980

CR & LR: Alternative weights

Motivation Model Benchmarks Regulation Conclusions Challenges of eliminating the run and limiting risk-taking • Capital requirements can eliminate the run, but result in higher investment • Deposit insurance eliminates the run, but it increases the incentives for risk-shifting • A combination of capital requirements and dividend taxes can eliminate the run and tame risk taking, but it can violate the incentive compatibility constraint of

- patient depositors. Thus, it may also require a tax on liquid assets in order to yield the desired reduction in risk taking
- Capital and liquidity requirements together eliminate the run and reduce risk-taking, but also reduce the profits from intermediation and are harmful for the bankers
- Capital and loan-to-value requirements together can also eliminate the run and reduce risk-taking, but are harmful for the entrepreneur and reduce profits from intermediation

Мо	Model	Benchmarks	Regulation	

Capital regulation and deposit insurance

Table: Optimal Regulation for $w^P = 0.6$, $w^R = 0.3$, $w^B = 0.1$

	Competitive	Constrained	Capital	Capital regulation
	Equilibrium	Planner	Regulation	& Deposit Insurance
1	2.548	2.848	2.782	2.896
D^R	2.715	1.780	1.739	1.810
x ^R _{eq}	0.176	1.224	1.191	1.248
LIQ ₁	0.543	0.356	0.348	0.362
LIQ ₂ /LIQ ₁	0.000	0.000	0.000	0.000
r ^d	0.570	0.557	0.464	0.307
q	0.109	0.000	0.000	0.000
CR	0.148	0.500	0.500	0.500
LR	0.213	0.125	0.125	0.125
U^P	-1.697	-1.655	-1.656	-1.654
U ^R	-0.206	-0.201	-0.201	-0.202
U ^B	-1.834	-1.830	-1.825	-1.819
U ^{sp}	-1.000	-0.978	-0.982	-0.978

Motivation	Model	Benchmarks	Regulation	Conclusions
Conclusions				

- Lots of insights from this approach, but must
 - use GE models, with forward looking agents, and allow banks to provide multiple services
- Regulations that reduce the risk of a run can potentially generate Pareto improvements
- Preventing the excessive gambling is harder because of counterbalancing effects on different agents
- Allocational consequences of different regulations creates incentives for regulatory arbitrage and to lobby

	rat		

BACK-UP SLIDES

Motivation	Model	Benchmarks	Regulation	Conclusions
Aggregatio	a D 9 D into o	aingle agent		
Aggregating	g B & R into a	single agent		
Proposition				
Is possible un	nder very special o	conditions		
 Identical 	HARA utility funct	tions		
R has survey	ficient wealth so t	that he buys equity in	В	
ALL HOU	JSEHOLDS R AR	E PATIENT		
NO BANI	KRUPTCY			

- With bankruptcy, because B has limited liability, her valuations and R's diverge and aggregation fails even with CAPM utilities
- With impatient households R, valuations of B and R diverge as well
- Only way that capital structure is irrelevant (i.e. MM holds) is when aggregation of B & R obtains

▶ Return

Motivation	Model	Benchmarks	Regulation	Conclusions

Table: Deposit Rate in Planner's solution

						w ^R			
		0.100	0.200	0.300	0.400	0.500	0.600	0.700	0.800
	0.100	0.05	0.04	0.04	0.07	0.08	0.08	0.12	0.22
	0.200	0.05	0.05	0.05	0.08	0.08	0.14	0.26	-
	0.300	0.05	0.05	0.06	0.08	0.16	0.30	-	-
wP	0.400	0.06	0.06	0.08	0.20	0.36	-	-	-
	0.500	0.06	0.08	0.25	0.43	-	-	-	-
	0.600	0.08	0.32	0.56	-	-	-	-	-
	0.700	0.45	0.74	-	-	-	-	-	-
	0.800	1.05	-	-	-	-	-	-	-

Motivation	Model	Benchmarks	Regulation	Conclusions

Table: Percentage points difference in Intermediation Spread: Constrained Planner vs. Competitive Equilibrium

		w ^R								
		0.100	0.200	0.300	0.400	0.500	0.600	0.700	0.800	
	0.100	81.11%	82.33%	83.68%	82.30%	50.31%	50.41%	46.00%	33.47%	
	0.200	77.94%	78.95%	80.07%	50.29%	50.40%	43.59%	29.58%	-	
	0.300	75.00%	75.86%	75.85%	50.39%	40.48%	24.59%	-	-	
wP	0.400	72.27%	73.02%	50.38%	36.34%	17.99%	-	-	-	
	0.500	69.73%	50.37%	30.55%	9.85%	-	-	-	-	
	0.600	50.36%	21.96%	-4.38%	-	-	-	-	-	
	0.700	7.97%	-25.01%	-	-	-	-	-	-	
	0.800	-58.95%	-	-	-	-	-	-	-	

▶ Return to LR

Motivation	Model	Benchmarks	Regulation	Conclusions

Table: Deposit Rate in Planner's solution

						w ^R			
		0.100	0.200	0.300	0.400	0.500	0.600	0.700	0.800
	0.100	0.05	0.04	0.04	0.07	0.08	0.08	0.12	0.22
	0.200	0.05	0.05	0.05	0.08	0.08	0.14	0.26	-
	0.300	0.05	0.05	0.06	0.08	0.16	0.30	-	-
w ^P	0.400	0.06	0.06	0.08	0.20	0.36	-	-	-
	0.500	0.06	0.08	0.25	0.43	-	-	-	-
	0.600	0.08	0.32	0.56	-	-	-	-	-
	0.700	0.45	0.74	-	-	-	-	-	-
	0.800	1.05	-	-	-	-	-	-	-

Return to Investment

Motivation	Model	Benchmarks	Regulation	Conclusions

Table: Percentage points difference in Intermediation Spread: Constrained Planner vs. Competitive Equilibrium

		w ^R								
		0.100	0.200	0.300	0.400	0.500	0.600	0.700	0.800	
	0.100	81.11%	82.33%	83.68%	82.30%	50.31%	50.41%	46.00%	33.47%	
	0.200	77.94%	78.95%	80.07%	50.29%	50.40%	43.59%	29.58%	-	
	0.300	75.00%	75.86%	75.85%	50.39%	40.48%	24.59%	-	-	
wP	0.400	72.27%	73.02%	50.38%	36.34%	17.99%	-	-	-	
	0.500	69.73%	50.37%	30.55%	9.85%	-	-	-	-	
	0.600	50.36%	21.96%	-4.38%	-	-	-	-	-	
	0.700	7.97%	-25.01%	-	-	-	-	-	-	
	0.800	-58.95%	-	-	-	-	-	-	-	

Return to Investment

Motivation	Model	Benchmarks	Regulation	Conclusions

Table: Deposit Rate in Planner's solution

						w ^R			
		0.100	0.200	0.300	0.400	0.500	0.600	0.700	0.800
	0.100	0.05	0.04	0.04	0.07	0.08	0.08	0.12	0.22
	0.200	0.05	0.05	0.05	0.08	0.08	0.14	0.26	-
	0.300	0.05	0.05	0.06	0.08	0.16	0.30	-	-
wP	0.400	0.06	0.06	0.08	0.20	0.36	-	-	-
	0.500	0.06	0.08	0.25	0.43	-	-	-	-
	0.600	0.08	0.32	0.56	-	-	-	-	-
	0.700	0.45	0.74	-	-	-	-	-	-
	0.800	1.05	-	-	-	-	-	-	-

• Return to P's welfare

Motivation	Model	Benchmarks	Regulation	Conclusions

Table: % Change in Investment: Constrained Planner vs. Competitive Equilibrium

					w ^R				
		0.100	0.200	0.300	0.400	0.500	0.600	0.700	0.800
	0.100	-39.66%	-40.71%	-41.87%	-42.86%	-2.84%	-2.59%	-1.18%	2.28%
	0.200	-36.80%	-37.73%	-38.73%	-2.91%	-2.62%	-0.50%	3.32%	-
	0.300	-34.04%	-34.86%	-35.69%	-2.64%	0.36%	4.63%	-	-
wP	0.400	-31.36%	-32.10%	-2.68%	1.50%	6.32%	-	-	-
	0.500	-28.77%	-2.71%	3.07%	8.44%	-	-	-	-
	0.600	-2.74%	5.33%	11.74%	-	-	-	-	-
	0.700	9.15%	16.38%	-	-	-	-	-	-
	0.800	23.89%	-	-	-	-	-	-	-

• Return to P's welfare

		Conclusions

Table: Percentage points difference in Intermediation Spread: Constrained Planner vs. Competitive Equilibrium

		w ^R								
		0.100	0.200	0.300	0.400	0.500	0.600	0.700	0.800	
	0.100	81.11%	82.33%	83.68%	82.30%	50.31%	50.41%	46.00%	33.47%	
	0.200	77.94%	78.95%	80.07%	50.29%	50.40%	43.59%	29.58%	-	
	0.300	75.00%	75.86%	75.85%	50.39%	40.48%	24.59%	-	-	
wP	0.400	72.27%	73.02%	50.38%	36.34%	17.99%	-	-	-	
	0.500	69.73%	50.37%	30.55%	9.85%	-	-	-	-	
	0.600	50.36%	21.96%	-4.38%	-	-	-	-	-	
	0.700	7.97%	-25.01%	-	-	-	-	-	-	
	0.800	-58.95%	-	-	-	-	-	-	-	

Return to P's welfare

Motivation	Model	Benchmarks	Regulation	Conclusions

Table: Deposit Rate in Planner's solution

						w ^R			
		0.100	0.200	0.300	0.400	0.500	0.600	0.700	0.800
	0.100	0.05	0.04	0.04	0.07	0.08	0.08	0.12	0.22
	0.200	0.05	0.05	0.05	0.08	0.08	0.14	0.26	-
	0.300	0.05	0.05	0.06	0.08	0.16	0.30	-	-
wP	0.400	0.06	0.06	0.08	0.20	0.36	-	-	-
	0.500	0.06	0.08	0.25	0.43	-	-	-	-
	0.600	0.08	0.32	0.56	-	-	-	-	-
	0.700	0.45	0.74	-	-	-	-	-	-
	0.800	1.05	-	-	-	-	-	-	-

• Return to R's welfare

Motivation	Model	Benchmarks	Regulation	Conclusions

Table: % Change in Investment: Constrained Planner vs. Competitive Equilibrium

					w ^R				
		0.100	0.200	0.300	0.400	0.500	0.600	0.700	0.800
	0.100	-39.66%	-40.71%	-41.87%	-42.86%	-2.84%	-2.59%	-1.18%	2.28%
	0.200	-36.80%	-37.73%	-38.73%	-2.91%	-2.62%	-0.50%	3.32%	-
	0.300	-34.04%	-34.86%	-35.69%	-2.64%	0.36%	4.63%	-	-
wP	0.400	-31.36%	-32.10%	-2.68%	1.50%	6.32%	-	-	-
	0.500	-28.77%	-2.71%	3.07%	8.44%	-	-	-	-
	0.600	-2.74%	5.33%	11.74%	-	-	-	-	-
	0.700	9.15%	16.38%	-	-	-	-	-	-
	0.800	23.89%	-	-	-	-	-	-	-

• Return to R's welfare

Motivation	Model	Benchmarks	Regulation	Conclusions

Table: Percentage points difference in Intermediation Spread: Constrained Planner vs. Competitive Equilibrium

					w	R			
		0.100	0.200	0.300	0.400	0.500	0.600	0.700	0.800
	0.100	81.11%	82.33%	83.68%	82.30%	50.31%	50.41%	46.00%	33.47%
	0.200	77.94%	78.95%	80.07%	50.29%	50.40%	43.59%	29.58%	-
	0.300	75.00%	75.86%	75.85%	50.39%	40.48%	24.59%	-	-
wP	0.400	72.27%	73.02%	50.38%	36.34%	17.99%	-	-	-
	0.500	69.73%	50.37%	30.55%	9.85%	-	-	-	-
	0.600	50.36%	21.96%	-4.38%	-	-	-	-	-
	0.700	7.97%	-25.01%	-	-	-	-	-	-
	0.800	-58.95%	-	-	-	-	-	-	-

Return to R's welfare

Motivation	Model	Benchmarks	Regulation	Conclusions

Table: Deposit Rate in Planner's solution

						w ^R			
		0.100	0.200	0.300	0.400	0.500	0.600	0.700	0.800
	0.100	0.05	0.04	0.04	0.07	0.08	0.08	0.12	0.22
	0.200	0.05	0.05	0.05	0.08	0.08	0.14	0.26	-
	0.300	0.05	0.05	0.06	0.08	0.16	0.30	-	-
wP	0.400	0.06	0.06	0.08	0.20	0.36	-	-	-
	0.500	0.06	0.08	0.25	0.43	-	-	-	-
	0.600	0.08	0.32	0.56	-	-	-	-	-
	0.700	0.45	0.74	-	-	-	-	-	-
	0.800	1.05	-	-	-	-	-	-	-

▶ Return to B's welfare

Motivation	Model	Benchmarks	Regulation	Conclusions

Table: % Change in Investment: Constrained Planner vs. Competitive Equilibrium

					w ^R				
		0.100	0.200	0.300	0.400	0.500	0.600	0.700	0.800
	0.100	-39.66%	-40.71%	-41.87%	-42.86%	-2.84%	-2.59%	-1.18%	2.28%
	0.200	-36.80%	-37.73%	-38.73%	-2.91%	-2.62%	-0.50%	3.32%	-
	0.300	-34.04%	-34.86%	-35.69%	-2.64%	0.36%	4.63%	-	-
wP	0.400	-31.36%	-32.10%	-2.68%	1.50%	6.32%	-	-	-
	0.500	-28.77%	-2.71%	3.07%	8.44%	-	-	-	-
	0.600	-2.74%	5.33%	11.74%	-	-	-	-	-
	0.700	9.15%	16.38%	-	-	-	-	-	-
	0.800	23.89%	-	-	-	-	-	-	-

• Return to B's welfare

Motivation	Model	Benchmarks	Regulation	Conclusions

Table: Percentage points difference in Intermediation Spread: Constrained Planner vs. Competitive Equilibrium

					w	R			
		0.100	0.200	0.300	0.400	0.500	0.600	0.700	0.800
	0.100	81.11%	82.33%	83.68%	82.30%	50.31%	50.41%	46.00%	33.47%
	0.200	77.94%	78.95%	80.07%	50.29%	50.40%	43.59%	29.58%	-
	0.300	75.00%	75.86%	75.85%	50.39%	40.48%	24.59%	-	-
wP	0.400	72.27%	73.02%	50.38%	36.34%	17.99%	-	-	-
	0.500	69.73%	50.37%	30.55%	9.85%	-	-	-	-
	0.600	50.36%	21.96%	-4.38%	-	-	-	-	-
	0.700	7.97%	-25.01%	-	-	-	-	-	-
	0.800	-58.95%	-	-	-	-	-	-	-

Return to B's welfare

	vati	

Benchmark

Timing

t=1	t=2	t=3
R chooses: -How much to invest with P, B or in the riskless asset -Whether to fund B with deposits or equity - How much to consume this period	R learns whether he is impatient or not: -If he is impatient, he withdraws his deposit and consumes - If patient, he might run based on B's riskiness and consume whatever he can	If a run has not occurred, then there are 3 outcomes for P's project (High, Med, Low) P repays all loans to R & B (or defaults)
B chooses: -Whether to make deposits or to buy bank equity -Whether to invest in the riskless asset	B chooses: - How to service withdrawals, selling the riskless asset or liquidating loans	B repays deposits first (or defaults) and then pays pro-rata dividends on equity
-Scale of the loan to P -How much to consume this period	P learns if his loan is called by B	All agents consume
P chooses: - The scale of the risky investment - How much to consume this period		

▶ Return to P's problem

	vati	

Benchmark

Timing

t=1	t=2	t=3
R chooses: -How much to invest with P, B or in the riskless asset -Whether to fund B with deposits or equity - How much to consume this period	R learns whether he is impatient or not: -If he is impatient, he withdraws his deposit and consumes - If patient, he might run based on B's riskiness and consume whatever he can	If a run has not occurred, then there are 3 outcomes for P's project (High, Med, Low) P repays all loans to R & B (or defaults)
B chooses: -Whether to make deposits or to buy bank equity -Whether to invest in the riskless asset	B chooses: - How to service withdrawals, selling the riskless asset or liquidating loans	B repays deposits first (or defaults) and then pays pro-rata dividends on equity
-Scale of the loan to P -How much to consume this period	P learns if his loan is called by B	All agents consume
P chooses: - The scale of the risky investment - How much to consume this period		

Return to R's problem

	vati	

Benchmark

Timing

t=1	t=2	t=3
R chooses: -How much to invest with P, B or in the riskless asset -Whether to fund B with deposits or equity - How much to consume this period	R learns whether he is impatient or not: -If he is impatient, he withdraws his deposit and consumes - If patient, he might run based on B's riskiness and consume whatever he can	If a run has not occurred, then there are 3 outcomes for P's project (High, Med, Low) P repays all loans to R & B (or defaults)
B chooses: -Whether to make deposits or to buy bank equity -Whether to invest in the riskless asset	B chooses: - How to service withdrawals, selling the riskless asset or liquidating loans	B repays deposits first (or defaults) and then pays pro-rata dividends on equity
-Scale of the loan to P -How much to consume this period	P learns if his loan is called by B	All agents consume
P chooses: - The scale of the risky investment - How much to consume this period		

▶ Return to B's problem

	vati	

Benchmark

Timing

t=1	t=2	t=3
R chooses: -How much to invest with P, B or in the riskless asset -Whether to fund B with deposits or equity - How much to consume this period	R learns whether he is impatient or not: -If he is impatient, he withdraws his deposit and consumes - If patient, he might run based on B's riskiness and consume whatever he can	If a run has not occurred, then there are 3 outcomes for P's project (High, Med, Low) P repays all loans to R & B (or defaults)
B chooses: -Whether to make deposits or to buy bank equity -Whether to invest in the riskless asset	B chooses: - How to service withdrawals, selling the riskless asset or liquidating loans	B repays deposits first (or defaults) and then pays pro-rata dividends on equity
-Scale of the loan to P -How much to consume this period	P learns if his loan is called by B	All agents consume
P chooses: - The scale of the risky investment - How much to consume this period		

▶ Return to B's problem

• Assume that the probability of the state of the world, which is realized at $t = 3$, is driven by a state variable $z_{\tau}, \tau \in \{1, 2\}$ and that $z_2 = z_1 + \eta$, where $\eta \sim U[-\bar{\eta}, \bar{\eta}]$
 We assume that η is realized at the beginning of period 2, but it is not publicly revealed. Rather, each depositor obtains a signal x_i = η + ε_i, where ε_i are small error terms that are independently and uniformly distributed over [-ε, ε]
• While all impatient depositors demand early withdrawal, patient ones need to compare the expected payoffs from going to the bank in period 2 or 3. The ex-post payoff of a patient agent from these two options depends on both η and the proportion <i>m</i> of agents demanding early withdrawal
• We are interested in a threshold equilibrium in which a patient depositor with signal x_i withdraws his deposits at $t = 2$ when the signal is below a common threshold, i.e. $x_i \le x^*$. Otherwise, he withdraws at $t = 3$. This implies also a threshold for the fundamental, i.e. a run will occur when $\eta \le \eta^*$
$\int_{m=\delta}^{\theta} \sum_{s} \omega_{3s} \left(z_1 + x^* + \epsilon \left(1 - 2 \frac{m-\delta}{1-\delta} \right) \right) U^{R}(c_{3s}^{R,\mathit{no-run},\mathit{wait}}) dm + \int_{m=\theta}^{1} \frac{\theta}{m} U^{R}(c_{3s}^{R,\mathit{run},\mathit{unpaid}}) dm =$
$\int_{m=\delta}^{\theta} \sum_{s} \omega_{3s} \left(z_1 + x^* + \epsilon \left(1 - 2\frac{m-\delta}{1-\delta} \right) \right) U^{R}(c_{3s}^{R, no-run, withdraw}) dm + \int_{m=\theta}^{1} \frac{\theta}{m} U^{R}(c_{3s}^{R, run, paid}) dm$
where $\theta = \frac{LIQ_1 + \xi \cdot I}{D^R(1 + t_2^D)}$ Return to bank-runs

Conclusions

Combining CR and LR for $w^P = w^R = 0.35$, $w^B = 0.3$

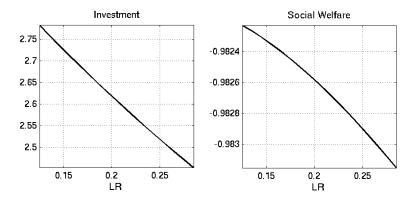


Figure: Risky investment (left) and social welfare (right) for stricter liquidity requirements under optimal capital regulation ($w^P = 0.35$, $w^R = 0.35$).

Return to optimal regulation