Macroeconomic Implications of the Underground Sector: Challenging the Double Business Cycle Approach

Catalina Granda-Carvajal

Universidad de Antioquia

October 7, 2011

31.5

Background Objective

Theory vs. Evidence

Time series of irregular sector

- Procyclical: Giles (1997), Bajada (2003)
- Countercyclical: Russo (2008)

'Double business cycle' approach

- Real business cycle models based on premise that fluctuations in official and unofficial sectors are negatively correlated
- Examples: Busato & Chiarini (2004), Russo (2008)
- Intersectoral reallocation of labor and production explain employment volatility puzzle

・同 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

Background Objective

This paper ...

- Develops RBC model not assuming countercyclicality between official and unofficial economy
 - Regular and irregular labor additively separable in utility
 - Leisure spent on irregular work effort and non-market activities
- Contrasts resulting moments with estimated correlations in Granda-Carvajal (2010)
- Assesses effect of tax structure, enforcement and tastes for irregular labor on decision to become underground and on macroeconomic fluctuations

伺 と く き と く き と しき

Firms Households Government

Structure

- Firms:
 - Produce one homogeneous commodity
 - Hide part of production in order to evade taxes
- Households:
 - Work in both sectors
- Government:
 - Balances budget
 - Enforces a monitoring system for tax evasion

★ ∃ →

3 N

-

Firms Households Government

Technologies

Official:

$$y_t^f = z_t^f k_t^\alpha (l_t^f)^{1-\alpha}$$

Underground:

$$y_t^u = z_t^u I_t^u$$

where z_t^i are sectoral productivity shocks Total production:

$$y_t^{tot} = y_t^f + y_t^u$$

▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● ● ● ●

Firms Households Government

Profit maximization

Let τ_t^f : corporate tax rate, τ^s : social security tax rate, ϕ : detection probability, and ς : fine

Expected revenues:

$$(1-\tau_t^f)y_t^f + (1-\phi\varsigma\tau_t^f)y_t^u$$

Expected costs:

$$(1+\tau^s)w_t l_t^f + (1+\phi\varsigma\tau^s)w_t l_t^u + r_t k_t$$

Arbitrage condition (from F.O.C.s):

$$\frac{1-\tau_t^f}{1+\tau^s}(1-\alpha)z_t^f k_t^\alpha (I_t^f)^{-\alpha} = \frac{1-\phi\varsigma\tau_t^f}{1+\phi\varsigma\tau^s} z_t^u$$

Alternatively, $w_t^f \equiv w_t (1+ au^s)$ yields a wage differential

Firms Households Government

Momentary utility function

$$U(c_t, l_t^f, l_t^u) = \ln c_t - a rac{(l_t^f)^{1+\gamma}}{1+\gamma} - b rac{(l_t^u)^{1+\eta}}{1+\eta}$$

- Based on Cho & Cooley's (1994) family labor supply model
- $1/\eta$ positively related to disutility of underground work effort
- No adjustment cost of moving across sectors

F.O.C.s with respect to both types of labor:

$$a(l_t^f)^{\gamma} = \frac{1 - \tau_t^w}{c_t} \frac{1 - \tau_t^f}{1 + \tau^s} (1 - \alpha) z_t^f k_t^{\alpha} (l_t^f)^{-\alpha}$$
$$b(l_t^u)^{\eta} = \frac{1 - \phi_{\varsigma} \tau_t^f}{1 + \phi_{\varsigma} \tau^s} \frac{z_t^u}{c_t}$$

Firms Households Government

Budget constraint

$$g_t + T_t = \tau_t^f y_t^f + \phi_{\varsigma} \tau_t^f y_t^u + (\tau^s + \tau_t^w) w_t l_t^f + \phi_{\varsigma} \tau^s w_t l_t^u$$

Government consumption follows stochastic process:

$$g_t = z_t^g y_t^{tot}$$

同 ト イヨト イヨト ヨヨ のくべ

	Motivation Model Calibration Results Conclusions		
^D arameters			

Matching U.S. business cycle stylized facts for 1960-2006

β	δ	α	а	b	γ	η	ϕ	ς
0.95	0.10	0.36	3.7569	2.8814	1	0.2381	0.015	1.2

- Attempts to incorporate evidence on elasticity of underground labor supply
- Calibration of technology shocks from BRW (1991)
- Parameterization of tax disturbances from Braun (1994)

Moments Experiments

Comparing volatilities . . .

	Data	Model	BC ('04)	
	$\sigma(x)/\sigma(y^f)$	$\sigma(x)/\sigma(y^f)$	$\sigma(x)/\sigma(y^{tot})$	$\sigma(x)/\sigma(y^{tot})$
y ^f	1.00000	1.00000	1.12169	1.86
y ^{tot}	—	0.89151	1.00000	1.00
c ^{tot}	—	0.30647	0.34377	0.80
c ^f	0.89129	0.54997	0.61689	—
i	4.08135	5.29241	5.93645	6.64
lf	1.92521	1.16877	1.31100	1.10
y^f/l^f	1.20065	1.36146	1.52713	2.00

• Understates properties of consumption (c^{f} more volatile than c^{tot})

- 4 母 ト 4 ヨ ト ヨ ヨ - シ ۹ ()

Moments Experiments

Comparing comovements ...

	(Correl. wit	Correl. with y^{tot}		
	Data	Model	MRW('97)	Model	BC ('04)
y^{f}	1.0000	1.0000	1.00	0.9930	0.95
c ^{tot}	_	0.3450	-	0.2376	0.69
c ^f	0.8795	0.3225	0.91	0.2106	-
i	0.8425	0.9233	0.66	0.9582	0.98
I ^f	0.8479	0.9613	0.70	0.9837	0.73
y^{f}/l^{f}	-0.5268	-0.9572	-	-0.9761	0.08
y ^u	_	-0.2720	_	-0.1561	-0.96

- Predicts volatility and cyclicality of investment, average hours and labor productivity fairly well
- Unofficial sector is weakly countercyclical

伺 ト イヨト イヨト ヨヨー わえつ

Moments Experiments

More on comovements ...

	Correl. with hours					
	Data	Model	BC ('04)			
Productivity	-0.8973	-0.9935	0.04			

- Significant improvement on Busato & Chiarini (2004) as to labor productivity
- Model replicates recent tendencies in labor market dynamics accurately

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 三 臣 ■ り へ ()

Motivation Model Calibration Results

Moments Experiments

Sensitivity of output volatility to tax rates

C. Granda-Carvajal Underground Economy & Business Cycles

-

Moments Experiments

Computational experiments – Volatility

Changed	Effect on volatility of						
parameter	y^f	c^{f}	i	lf	g	r	y^f/l^f
$\downarrow \phi$	\nearrow	\nearrow	_	_	\searrow	\searrow	\wedge
\downarrow s	\nearrow	\nearrow	-	-	\searrow	\searrow	\wedge
$\uparrow \tau^s$	-	-	-	-	-	-	-
$\uparrow \tau_{ss}^{f}$	\nearrow	\nearrow	\nearrow	\searrow	\searrow	\searrow	\searrow
$\uparrow \tau_{ss}^{w}$	-	-	-	-	-	-	-
↑ avgtax	\nearrow	\nearrow	\nearrow	\searrow	\searrow	\searrow	\searrow
$\downarrow 1/\eta$	\nearrow	\nearrow	—	_	\searrow	-	_
Data	y ^f	c ^f	i	lf	g	r	y^f/l^f
	+	$+^{\pm}$	$+^{\mp}$	0	$+^{\mp}$	+	0

Notes: \pm Robust ; \mp Not robust

▲冊 ▲ ● ▶ ▲ ● ▶ ● ■ ■ ● ● ●

Moments Experiments

Computational experiments – Cyclicality

Changed		Effe	ct on	cyclio	ality	of
parameter	c^{f}	i	lf	g	r	y^f/l^f
$\downarrow \phi$	\searrow	_	-	-	_	Г
\downarrow s	\searrow	-	-	-	-	Г
$\uparrow \tau^{s}$	—	-	-	—	-	-
$\uparrow au_{ss}^{f}$	\nearrow	\searrow	-	\nearrow	\searrow	-
$\uparrow \tau_{ss}^{w}$	-	-	-	—	-	-
↑ avgtax	\nearrow	\searrow	-	\nearrow	\searrow	-
$\downarrow 1/\eta$	\searrow	\searrow	-	\searrow	\searrow	-
Data	c ^f	i	lf	g	r	y^f/l^f
	_Ŧ	_ Ŧ	_Ŧ	0	_Ŧ	0

Note: \mp Not significant

同 ト イヨト イヨト ヨヨ つくべ

Concluding remarks

- Fiscal policy shocks, rather than underground sector, explain employment volatility puzzle
 - Non-significant relation between comovement of labor input and shadow activities
 - Labor volatility uncorrelated with extent of unofficial sector
- Distortionary taxation in two-sector framework rationalizes cyclical behavior of labor market variables
 - Cyclical properties of labor productivity not related with irregular economy
- Positive connection between unofficial sector and volatility of output and its private components

伺 と く き と く き と しき

Alternative specifications of preferences:

- Non-additively separable utility functions
- Imperfect substitution in consumption goods

-

ヨート

ъ

Busato & Chiarini (2004)

Let
$$I_t^u \equiv 1 - I_t^f$$
, then

$$U(c_t, l_t^f, l_t^u) = \ln c_t - a rac{(l_t^f)^{1+\gamma}}{1+\gamma} l_t^u - b rac{(l_t^u)^{1+\eta}}{1+\eta}$$

C. Granda-Carvajal Underground Economy & Business Cycles