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Abstract

The financial crisis of the late 2000’s underscored the importance of identifying systemically

significant institutions and developing mechanisms for the latter to internalize the externalities they

create on the economy should they fail. Using monthly data for the period comprised between

September, 2001 - March, 2011, we calculated bank-specific probabilities of default and expected

losses given default. Subsequently, we estimated the joint distribution of such expected losses and

found the aggregate cost of the implicit bailout option for the government. Our results suggest that

even though systemic risk is currently not a major concern in the Colombian banking system, it is

necessary to enhance the supervisory and regulatory framework to include quantitative measures of

this risk.
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Resumen

La crisis financiera de 2008-2009 resaltó la importancia de identificar a instituciones sistemática-

mente importantes y de desarrollar mecanismos para que éstas internalizaran las externalidades que

crean en la economía ante una eventual quiebra. Utilizando datos mensuales para el periodo com-

prendido entre Septiembre de 2001 - Marzo de 2011, calculamos probabilidades de default y pérdidas

dado incumplimiento a nivel individual para un grupo de bancos comerciales. Consecuentemente,

estimamos la distribución conjunta de dichas pérdidas y encontramos el costo agregado de la opción

implícita de rescate de parte del gobierno. Nuestros resultados sugieren que si bien el riesgo sistémico

no parece ser una preocupación mayor en este momento en el sistema bancario, es necesario fortalecer

el marco de supervisión y regulación para incluir medidas cuantitativas de este riesgo.
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1. Introduction

The international financial crisis of the late 2000’s is arguably the most significant financial crisis since the
Great Depression. The costs associated with the crisis include the collapse of large financial institutions
(e.g. Northern Rock, Bear Sterns and Lehmann Brothers), sharp declines in asset prices which deteri-
orated household wealth (therefore altering consumption and investment decisions) and the bailout of
private banks by national governments. The latter included not only capital injections, but the purchase
of toxic assets, guarantees over debt and liquidity support from central banks. Additionally, the finan-
cial crisis also gave investor confidence a huge blow, effectively drying-up commercial debt markets and
overnight funding, and increasing the risk of moral hazard in the economy. Though many of these effects
are not directly quantifiable, the International Monetary Fund (IMF), in its Global Economic Outlook of
April 2010, estimates that the cost to financial institutions of the global economic crisis, due to banking
system write-downs, to be close to US$2.3 trillion (International Monetary Fund (2010)).

Nonetheless, the initial attention that was focused on finding the trigger of the financial crisis has grad-
ually shifted towards the lessons that can be learned from it. Importantly, there has been renewed
attention on the close link between financial risk and the sovereign, one that became readily apparent
when governments were forced to channel national funds to absorb private losses and prevent a more
pronounced macroeconomic shock. In this way, the recent crisis highlighted the importance of identifying
systemically important institutions (i.e. the so-called too-big or too-interconnected to-fail) as well as that
of developing mechanisms for these institutions to internalize the externality that their failing generates
on the financial system and the economy as a whole.

Hence, a considerable number of academic and policy papers have recently began to explore the statistical
tools at hand to enhance our understanding and measurement of systemic risk (see Gray et al. (2008),
Gray & Jobst (2010b), Gray & Jobst (2010a) and Saldías (2010)). The importance of these initiatives is
that they constitute a first attempt at developing methodologies to quantify this risk in a consistent and
continuous manner, and are therefore a necessary tool if regulators aim at having financial institutions
internalize this cost. In addition, these initiatives should have the side-effect of alleviating some of the
moral hazard concerns that followed the chain of bailouts from governments around the globe, and could
therefore help restore investor confidence.

Most of the literature aimed at analyzing systemic vulnerabilities stems from the theory and practice of
modern Contingent Claims Analysis (CCA), which applied to the measurement of credit risk is commonly
called the “Merton Model" (Merton (1974), Merton (1977)). Under this framework, we apply the explicit
formulae for both the distance-to-distress and probability of default to commercial banks in the Colombian
financial system, as well as for the expected loss given default, which in effect constitutes the value of the
implicit bailout by the government. Henceforth, we use monthly market data for the period comprised
between September:2001 - March:2011 to quantify these variables.

More importantly, given that the implicit bailout by the government can be represented as the price of a
put option, we suggest that systemic risk can be quantified by calculating the traditional risk measures
(i.e. Value-at-Risk and Expected Shortfall) on a portfolio comprised of such puts. In other words, in
this paper we understand systemic risk as the expected aggregate cost for the government, under a
default scenario, given the implicit bailout option. We use extreme value theory and copulas to account
for the marginal distributions and the dependence between them. Our sample consists of 4 of the 23
banks in Colombia’s financial system (which will be referred to as Bank A, Bank B, Bank C and Bank
D, respectively), since this is the number of intermediaries that have traded continuously in the stock
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market for more than 5 years. These four banks are relatively big, representing close to 46% of total
assets in the banking system, and so concentrating our analysis on these intermediaries, in a systemic
risk setting, seems appropriate.

Our results suggest that systemic risk is currently not a major concern in the Colombian banking system,
with expected aggregate losses, considering a one-month holding period, being less than 1% of 2011’s first
quarter GDP. This is, at least partially, due to the fact that we are only considering the 4 largest com-
mercial banks, and Colombia’s financial system has many important non-bank institutions. Additionally,
Colombia’s banking system is not particularly deep, with the ratio of total loans to GDP being slightly
above 30%, and most institutions still operate under a model of traditional intermediation, where assets
are divided between loans and government debt securities, and liabilities are concentrated in demand
deposits. Moreover, the regulatory framework in Colombia is highly conservative, banning credit insti-
tutions from engaging in several financial activities, such as the trading of credit default swaps. These
factors contribute to relatively low levels of asset volatility, and ultimately, low probabilities of default.

Nonetheless, we strongly believe that monitoring and regulating systemic risk is of crucial importance.
As Colombia’s financial system continues developing, interactions between institutions will become more
complex, potentially increasing the risk of contagion across markets and thus, overall systemic vulnera-
bility. Our approach, by allowing to quantify the individual contribution of each bank to aggregate risk,
constitutes an ideal regulatory tool in an attempt to solidify risk-based capital charges in the spirit of
Basel III. Finally, as our risk measures are based on forward-looking variables (i.e. the one-month-ahead
expected loss given default), we believe that it represents a useful instrument for macroprudential as well
as financial stability purposes.

This paper is organized as follows. Section 1 presented a brief introduction, while Section 2 provides the
framework in which systemic risk is developed. Section 3 outlines the theoretical model and our empirical
strategy. The Government implicit bailout option is described and quantified in section 4 whilst results
on the calculated risk measures can be found in Section 5. Finally, Section 6 concludes.

2. Systemic Contingent Claims Analysis

Given the recent events in financial markets, significant efforts have been concentrated in developing
methodologies to determine the contribution of individual financial institutions to systemic risk, consid-
ering the contagion between them. Four of the main systemic risk models proposed are CoVaR (Adrian
& Brunnermeier (2010)), Systemic Expected Shortfall (SES) (Acharya et al. (2010)), Distress Insurance
Premium (DIP) (Huang et al. (2009)) and the Systemic Contingent Claims Analysis (CCA) (Gray &
Jobst (2010b)). The latter approach is highlighted because it is a more comprehensive and flexible model
in comparison with CoVaR or SES (which can be viewed as a subset of the Systemic CCA approach) in
the sense that it provides a direct quantification of the dependence structure between all individual insti-
tutions in the network. In addition, Systemic CCA outperforms the dependence structure of DIP models,
capturing tail risk and average risk in a more sophisticated way than through simple linear correlation.

Accordingly, a considerable number of empirical research regarding systemic risk has focused on the
the study of CCA1. As mentioned above, this approach is a generalization of the option pricing theory

1The CCA approach is based on the estimation of the default probability by an entity on its obligations, and is widely
used by rating agencies to asses creditworthiness in the corporate sector. A contingent claim is any financial asset whose
future payoff depends on the value of another asset.
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developed by Black & Scholes (1973), Merton (1973) and Merton (1974), which applied to the analysis of
credit risk is commonly referred to as the “Merton Model". In general, this framework is used to estimate
a firm-specific risk indicator, namely, the expected probability of default, and it can be extended to asses
the systemic risk of a financial market. Hence, assuming that the government will bailout the banks in
the event of bank distress, the Systemic CCA approach allows to asses total implicit government liabilities
and the individual banksŠ contribution to this potential cost (Gray & Jobst (2010b)).

The idea behind the basic CCA is to quantify the creditworthiness of a debt issuer, which could be a firm,
a government or a bank, as in our case. Under this approach, the debt-holders of the bank effectively
own the institution’s assets until their liabilities are payed off. In this sense, owners of equity in leveraged
banks hold a call option on the bank. In non-default scenarios, they are the residual claimants on the
bankŠs asset value once outstanding debts have been settled, and have limited liability in the event of
default. Thus, implementing the Black-Scholes-Merton (BSM) formulation it is possible to value the
call option held by equity owners and, subsequently, to study the behavior over time of both default
probabilities and the distance-to-distress, at an individual level.

Recent empirical works developed by the IMF and some central banks have used the CCA methodology
in order to quantify the level of risk posed by individual financial institutions in emerging economies. For
instance, using both book-value and market data, Gray & Walsh (2008) on Chile, Souto & Abrego (2008)
on Colombia, Blavy & Souto (2009) on Mexico and Antunes & Silva (2010) on Portugal, employ the CCA
methodology to asses risk indicators to banking sector2. Findings show that there is a significant hetero-
geneity among banks’ risk indicators, and that bank soundness is related to macro-financial variables3.
Moreover, the risk indicators (distance-to-default and probabilities of default) capture episodes of bank
stress appropriately.

However, there is a wide heterogeneity between the manner in which CCA is applied in practical work.
For instance, some studies like Souto et al. (2009) on Brazil and Souto (2008) on Uruguay, performed
the same analysis of the traditional Merton Model using only book-value data into the estimation of
credit risk indicators due to the absence of market data. The results of this modified framework appear
to be appropriate for countries without developed equity markets, at least in the sense that they reflect
episodes of financial stress accordingly. Additionally, other studies like Gray & Jones (2006) on Indonesia
and Keller et al. (2007) on Turkey, have used the BSM model not only to analyze banking sector risk,
but to analyze sovereign risk using government balance sheet information.

Nonetheless, the risk indicators obtained from the BSM formulation only allow for analysis at a bank-
specific level. Consequently, in order to build a measure of systemic risk it is necessary to account for the
dependence structure of the individual market valuations of the relevant contingent claims. According to
Gray & Jobst (2010b), the systemic CCA framework approximates the joint asymptotic tail behavior of
expected losses and associated contingent liabilities of financial institutions using a multivariate density
estimation. Hence, the most recent analysis, such as that of Gray et al. (2011) on Israel, builds on recent
work using the Systemic Contingent Claims (Systemic CCA). The authors apply the CCA framework in
order to calculate individual contingent liabilities for banks and insurance companies using information
from equity and CDS markets, and finally use extreme value theory (EVT) to generate a multivariate
limiting distribution that captures extreme realizations of expected losses of the system.

2Some of those studies do not calculated directly the default probabilities, instead they use MoodyŠs-KMV estimates of
expected default frequencies (EDFs) as a direct measure risk.

3This analysis are performed by building models (as VAR, Panel data models) that estimate the relationship between
default probabilities and macro-financial indicators.

4



Measuring Systemic Risk in the Colombian Financial System

In concordance with the fact that Systemic CCA is a more complete measure for systemic risk in com-
parison with other popular approaches, and that some individual risk indicators have been quantified for
the colombian financial system under the CCA perspective (Souto & Abrego (2008)), we consider the
Systemic CCA analysis as the ideal tool in measuring systemic risk in the colombian banking sector.

3. The Merton Model

The Merton Model, in its basic formulation, is built upon the simplest capital structure one can assume
for a firm (or bank for that matter). Namely, at any point in time t, it consists of common equity (Et)
and a risky zero-coupon bond (Dt) with face value at maturity given by D (i.e. the book value of total
liabilities). Hence, the total market value of assets at any point is given by:

Assets = Risky Debt + Equity

At = Dt + Et (1)

Moreover, the model assumes that there can only be default at time T , which is the maturity date for
the bond4. Assets are stochastic and assumed to follow a lognormal distribution. The diffusion process
for the asset’s return is of the form:

dAt

At

= µAdt + σAdW P
t (2)

= µAdt + σAε
√

t (3)

where µA is the drift rate or asset return, σA is equal to the standard deviation of the asset return, and
ε ∼ N(0, 1). Formally, this process is known as “Geometric Brownian Motion" and dW P

t ≡ ε
√

t is a
normally distributed “Wiener Process" under the real-world probability measure P . Note that the latter
assumption is what implies that assets follow a lognormal distribution. Using the Ito-Doeblin theorem,
one can easily show that such a process for At implies:

At = A0e

(
µA−σ

2

A

2

)
t+σAε

√
t (4)

In order to determine the probability of default, we first define the default set as ε = {AT ≤ D}. Hence,
the real-world probability of default at time T , conditional on the information at t, PD(t, T ), is given by:

PD(t, T ) = Prob(AT ≤ D) (5)

= Prob

(

Ate

(
µA−σ

2

A

2

)
(T−t)+σAε

√
T−t ≤ D

)

(6)

= Prob

(

ε ≤ − ln
(

At

D

)
+
(
µA − σ2

A

2

)
(T − t)

σA

√
T − t

)

(7)

= Prob (ε ≤ −DDt) (8)

= N(−DDt) (9)

4Black & Cox (1976) relax this assumption and extend the analysis to allow for default to occur when the value of the
firm’s assets reaches a lower threshold.
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where DDt is the distance-to-distress at time t for an asset with drift µA, volatility σA and distress barrier
D, and the function N(·) is the cumulative distribution function for a standardized normal distribution.
Note that DDt is the number of standard deviations that the asset is from the default barrier, D.

3.1. Calculating the Probability of Default

From equation (7) above, it is clear that in order to determine the probability of default we need the
following vector of inputs (At, D, µA, σA, T − t). As mentioned before, D is given by the book value of
total liabilities (and is hence readily available from the bank’s balance sheet), while T − t is, following
the standard in the literature, set to one year (i.e. T − t = 1). The market value and volatility of assets,
on the other hand, are not observable. However, the market value of equity and the volatility of equity
returns are quoted in the market, and under the framework of the Merton model, this allows us to derive
explicit relationships between the observable and unobservable variables such that we can back-out the
implied market value of the latter.

Given the simple capital structure of the model, note that equity is defined as a residual claim on assets
once debt-holders are paid-out in their entirety. In other words, equity is a call option, with asset value
as the underlying, the distress barrier (D) as the strike and T − t as the time to maturity. Hence, the
value of equity at any moment in time t, is given by the conditional expectation (under the risk-neutral
probability measure Q) of the terminal payoff:

Et = EQ
t

[

e−r(T−t)max(AT − D, 0)
]

(10)

= CBSM (At, D, T − t) (11)

where CBSM is the price for a European call option using the Black-Scholes-Merton (BSM) pricing
formula (see Black & Scholes (1973) and Merton (1973)). The closed-form solution for the price of equity
follows from the fact that assets (i.e. the underlying) are assumed to follow a lognormal distribution and
both the risk-free rate and asset volatility are assumed to be time-invariant. The latter thus implies that
we can calculate the market value of equity at time t as:

Et = AtN(d1) − De−r(T−t)N(d2) (12)

where d1 =
ln(At

D
) + (r +

σ2

A

2 )(T − t)

σA(T − t)
(13)

= DD
Q
t (14)

and d2 = d1 − σA

√
T − t (15)

Moreover, note that since equity is a function of assets, we can use the Ito-Doeblin theorem to derive an
expression for the diffusion process followed by the former. Explicitly, we have that:

dEt =
∂E

∂A
dAt +

1

2

∂2E

∂A2
A2

t σ
2
Adt (16)

=
∂E

∂A
(At r dt + AtσAdW

Q
t ) +

1

2

∂2E

∂A2
A2

t σ
2
Adt (17)

=

(
∂E

∂A
At r +

1

2

∂2E

∂A2
A2

t σ
2
A

)

dt +
∂E

∂A
AtσAdW

Q
t (18)
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where we use the fact that under the risk-neutral probability measure Q, assets follow a geometric
brownian motion process with a drift given by the risk-free interest rate r (i.e. dAt = At r dt+AtσAdW

Q
t ).

Assuming that equity also follows a lognormal process implies that:

dEt = Et r dt + EtσEdW
Q
t (19)

Matching terms in equation (18) with those in equation (19) implies that:

Et r =

(
∂E

∂A
At r +

1

2

∂2E

∂A2
A2

t σ
2
A

)

(20)

and

EtσE =
∂E

∂A
AtσA (21)

σE = N(d1)
At

Et

σA (22)

Recall that our limitation to calculate the probability of default lay in our inability to observe the market
value of assets and asset return volatility. Nonetheless, since the market value of equity and the volatility
of equity returns are both quoted by the market, we can use equations (12) and (22) to obtain the market
value of assets and asset return volatility implicit in them. Our empirical strategy consists simply of
solving this system of equations simultaneously.

3.2. Empirical Strategy

In order to calculate the distance-to-distress, we use monthly data for the banks that quoted in the stock
market for the entire period comprised between September:2001 - March:2011. This criteria implies that
our entire sample is comprised of four banks. However, we believe in the representativeness of these 4
banks from a systemic perspective, given that they accounted for nearly 46% of total bank assets as of
April 20115. The variables used are as follows6:

• risk-free rate (r): 3-month average Certificate of Deposit (CD) rate7

• distress barrier (D): book value of total liabilities

• market value of equity (Et): current market capitalization at time t

• equity returns volatility (σE): annual volatility of monthly stock price returns8

• time to maturity (T − t): one year

• market value of assets (At): obtained from solving equations (12) and (22) simultaneously

5This proportion has increased importantly during the period of analysis, going from 28.4% in September, 2001 to 46.4%
in April, 2011.

6The recent behavior of these series is found in Appendix A.
7We also conducted the exercises described below using the 3-month interbank rate as our risk-free rate. Results are, in

essence, identical.
8In order to effectively calculate equity returns volatility, we use daily stock prices for the 4 banks for the period comprised

between July:2000 - March:2011. To calculate the volatility of equity, we first define monthly returns as:

νi = ln
Plast

Pfirst

(23)

where Plast is the closing price on the last trading day of a given month and Pfirst is the closing price on the first day
of the same month. Subsequently, we use these monthly returns to calculate the annual volatility of equity returns (at a
monthly frequency) as:
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• asset return volatility (σA): obtained from solving equations (12) and (22) simultaneously

Once we have all our inputs, we calculate the distance-to-distress and probability of default under the
risk-neutral probability measure as:

DD
Q
t =

ln
(

At

D

)
+
(
r − σ2

A

2

)
(T − t)

σA

√
T − t

(25)

PDQ(t, T ) = N(−DD
Q
t ) (26)

On a final note, we also calculate an additional measure of the distance-to-distress. The latter is based on
an intuitive definition of the distance-to-default proposed by Moody’s KMV model (see Crosbie & Bohn
(2001)), and we will refer to it as the theoretical distance-to-distress (TDD). Given the widespread use
of the KMV methodology, we believe this extra measure provides a natural benchmark with which to
compare the distance-to-default of the “pure" BSM model.

The TDD is simply defined as the ratio between the bank’s net market worth and the size of a one
standard deviation move in asset value; In other words, the number of standard deviations that asset
value is away from default. Hence, we can compute the theoretical probability of default (TPD) as:

TDDt =
Market value of Assets − Default Point
Market Value of Assets · Asset Volatility

(27)

=
At − D

At · σA

(28)

TPDt = N(−TDDt) (29)

At this point, it is worth mentioning that the risk measures calculated with the theoretical probability of
default are expected to be more stringent than those of the BSM model. This follows from the fact that
one can easily show that TDDt ≤ DDt for any value of the relevant vector of parameters (At, D, r, σA),
and hence the corresponding default probabilities and expected losses will, ceteris paribus, be higher9.

σE =

√
1

n−1

∑n
i=1 ν2

i − 1
(n−1)n

(
∑n

i=1 νi)2

√
1
n

(24)

where n is 12.
9Explicitly, we want to show:

TDDt ≤ DDt,

which is true if and only if

1 + ln

(
D

At

)

−
D

At

≤

(

r +
σ2

A

2

)

︸ ︷︷ ︸

≥0

Therefore, it is sufficient to show that:

1 + ln

(
D

At

)

−
D

At
≤ 0.

For simplicity, we rewrite this condition as:

1 + ln(x) − x ≤ 0

8



Measuring Systemic Risk in the Colombian Financial System

Results of the distance-to-distress and default probabilities using both methods for the 4 banks can be
viewed in Figure 1 below.

and check to see if this function has a global maximum or minimum:

∂

∂x
−→

1

x
− 1 = 0

x∗ = 1

∂2

∂x2
−→ −

1

x2
< 0 ∀x

Thus, we see that At = D is a global maximum of this function. Moreover, we have that:

1 + ln

(
D

At

)

−
D

At |At=D

= 0

Hence, for any value of D
At

6= 1, we have that:

1 + ln

(
D

At

)

−
D

At
< 0

Q.E.D.
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Figure 1: Distance to Distress and Default Probability, by bank
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Bank D
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From the observed results, we would like to highlight five facts. First, clearly, a smaller distance-to-

distress implies a greater default probability. Second, as expected the TDD is always smaller than the
one computed using the BSM framework. This implies that the theoretical default probability is always
greater than the one calculated with BSM. Third, default probabilities are at their lowest levels of the
last ten years, and where highest during 2001-2002, just a few years after the mortgage crisis of 1998-
1999. Fourth, results for the four banks indicate that, in general, the periods of higher bank distress
(i.e. higher probabilities of default), correspond to 2001-2002, 2006 and 2008-2009, which are effectively
periods of significant imbalances in Colombia’s financial market. Finally, Bank D exhibits the highest
default probabilities (and hence the shortest distance-to-distress) in the sample. This is due to the fact
that this bank has both the highest equity (and asset) volatility and the largest gross balance sheet
leverage ratio of the banks under study (see Appendix A)10.

Although these results suggest that a bank failure seems implausible at present (and as such we could
expect systemic risk to be relatively low), they hold a latent warning. Specifically, that default prob-
abilities can change dramatically in relatively short periods of time. The latter implies that although
probabilities of default can be at low levels today, a constant monitoring of these variables is warranted.

4. Government’s Implicit Bailout

Obtaining the probability of default of the 4 major banks is a relevant result for financial stability purposes
in itself, as it provides supervisory authorities with an explicit and tractable early-warning indicator at a
firm-specific level. Nonetheless, it can also be further exploited to account for a more system-wide measure
of risk. The recent financial crisis highlighted the importance of large and interconnected institutions
and the imperative need to measure and regulate the systemic risk they pose.

In order to do so, we first specify the implicit bailout from the government. We assume that the sovereign
will effectively be liable to debt-holders and will therefore repay all outstanding debt net of the market

10Gross balance sheet leverage, calculated as the ratio of total assets to total book equity, reached 5.1, 6.7, 7.1 and 10.8
in April 2011 for Bank A, Bank B, Bank C and Bank D, respectively. Average leverage for the entire financial system stood
at 7.1, implying that only Bank D was above the system average in our sample.
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value of assets. The latter implies that the payoff that the government expects to undertake at time T is
thus given by:

PayoffT = Max(D − AT , 0) (30)

Note that equation (30) effectively defines the payoff of a put option, and hence we can express the
discounted expected value of the implicit bail-out (under the risk neutral probability), as the BSM price
of such an option. The expected loss given default (or expected implicit bailout) is therefore:

PE,t = De−r(T−t)N(−d2) − AtN(−d1) (31)

Where d1 and d2 are given in equation (13) and (15) above. Recall from the previous section that we
computed two versions of the distance-to-distress, and therefore we will have two distinct calculations of
the expected loss given default. We can rewrite equation (31) in terms of the risk-neutral probability of
default (RNPD) and the loss given default (LGD) as:

PE,t = N(−d2)
︸ ︷︷ ︸

RNDP

(

1 − N(−d1)At

N(−d2)De−r(T−t)

)

De−r(T−t)

︸ ︷︷ ︸

LGD

(32)

Figure 2 shows the historical contribution of each bank to the system-wide expected loss given default,
computed both with the BSM and the theoretical distance-to-distress. As anticipated, the expected LGD
computed with the TDD is greater than the one computed under the BSM framework. Under both
approaches, Bank D is the bank that exhibits the greatest contribution to potential systemic sovereign
risk, while Bank C has the least.

Interestingly, historical results show that periods where the implicit government bailout increased corre-
spond with periods of financial distress: 2001-2002, 2006 and 2008-2009. However, the main causes of
each of these periods of stress are fundamentally distinct. While the 2008 crises seems intimately linked
to a materialization of credit risk, and the 2006 crisis period can be better explained by an increased
exposure to market risk, the 2001-2002 period seems to have elements of both. What is important is
that since the default probability used to compute the expected LGD is based on the market value of
equity returns, it should encompass, assuming the Efficient Market Hypothesis holds, all the relevant
information needed to evaluate the performance of a bank in all of its fronts.

In the first of these three periods, the maximum loss (corresponding to the theoretical framework) that
would have faced the government in the event of default would be greater than COP$1.1 trillion11 (t)
(around US$496 million), the biggest in the period studied but still no larger than 2% of 2001’s fourth
quarter GDP. Not surprisingly, recall from Section 3.2 that the early 00’s also showed default probabilities
at their highest levels for all banks, possibly as a lagged symptom of the 98-99 mortgage crisis, one of
the deepest scenarios of financial distress in Colombia.

11We use the short-scale convention, so that 1 trillion is equal to 1 · 1012 .
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Figure 2: Implicit Government Bailout
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The roots of the 98-99 crisis period go back to 1991, when Colombia’s Congress issued the Financial
Reform Law, which eased controls on capital flows to facilitate foreign investment. The reform was
successful, and given the intimate relation between capital flow and loan cycles in Colombia (see Villar
et al. (2005)), their increase led to significant credit growth, especially mortgages. As consumption
increased, housing prices grew to their highest historical levels. This surge in prices was, nonetheless,
followed by a sharp increment in interest rates in response to the sudden stop in capital flows. As
loan-to-value ratios elevated, loan quality began to quickly deteriorate, which ultimately led to a general
reduction in the availability of credit (i.e. a credit crunch). With credit markets partially frozen, financial
institutions began to increase their holdings of Government securities. Higher demand from market
investors, coupled with lower interest rates since the beginning of 2000 as the Central Bank sought to
restore market liquidity, created ideal conditions for exceptional growth in this market. However, the
increase of interest rates between July and September of 2002, given the change in country risk, adversely
affected the price and volatility of these assets, causing additional losses in financial institutions balance
sheets (Financial Stability Report (2002)).

However, financial turmoil linked to the sovereign debt market was not exclusive of the 2002 episode
described above. In effect, the 2006 period was also characterized by imbalances stemming from the
investment portfolio of banks’ balance sheets. In the first semester of this year, the interest rate of the
secondary market for government bonds increased rapidly due to the massive liquidation of positions
by investors who expected increments in foreign rates. This phenomena caused an increase in market
volatility and consequently, financial institutions holding long positions in sovereign debt faced significant
valuation losses (Financial Stability Report (2006)). The maximum total expected cost for the government
was close to COP$0.26 t (around US$101 m), a little over 0.25% of 2006’s second quarter GDP.

Finally, the financial crisis of 2008-2009, which had considerable effects on international markets, had
only minor repercussions in the Colombian economy. Contagion of this crisis to the colombian banking
system occurred mainly through its effect on the real sector and increased risk aversion. The reduction
in international demand, coupled with significant drops in commodity prices, weakened the real sector’s
balance sheet, thus affecting their repayment capacity and ultimately increasing non-performing loans
indicators. Moreover, increased risk aversion, especially from banks, implied tighter credit conditions and
a reduced supply of financial funds. Still, the maximum aggregate expected loss for the government was
COP$0.11 t (around US$45 million), less than 0.1% of 2009’s first quarter GDP.

Still, the practical importance of being able to express the expected loss given default as a simple put
option goes beyond providing us a useful tool to analyze systemic risk in hindsight. Specifically, it implies
that we can quantify a forward-looking systemic risk measure by constructing a portfolio of put options
(i.e. one option per bank). Once we have defined such a portfolio, and taken into account the dependence
structure between the different put options, we can calculate any risk measure desired on the derivatives
portfolio. Of course, the crucial element in this analysis is how to best capture the dependence structure
between our random variables (i.e. the put options). In order to do this we turn to our powerful statistical
allies; copulas.

4.1. Copulas

In general terms, copulas are functions that approximate the joint behavior among random variables with
pre-specified marginal distributions. Although copulas are abstract in nature, they are one of the most
used tools for modeling dependence between random variables, specially when modeling the extremes of
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a distribution. Formally, if U1, · · · , Un are uniform random variables, the function C : [0, 1]n → [0, 1]

that satisfies

C(u1, · · · , un) = P {U1 ≤ u1, · · ·Un ≤ un} (33)

is the copula of U1, · · · , Un.
In the case where the marginals are not uniform variables, say, X1, · · · , Xn with cdf’s FX1

, · · · , FXn
,

respectively, the copula of the uniform random variables

U1 = FX1
(x1), · · · , Un = FXn

(xn) (34)

is called the copula of (X1, · · · , Xn). The dimension of the copula is the dimension of the domain of C.
In this case n.

As mentioned above, a copula enables to reconstruct the joint distribution of random variables taking the
marginal distributions as inputs. Sklar’s theorem12 provides the theoretical foundation for the application
of copulas. In particular, the theorem states that for a multivariate cumulative distribution function
F (x1, ..., xn) with marginal cdf’s given by Fi(xi) for i = 1, · · · , n, there exists a unique copula C such
that

F (x1, ..., xn) = C(F1(x1), ..., Fn(xn)) (35)

In this way, this formulation enables to decompose F (x1, ..., xn) into marginal distributions and a copula,
where the latter summarizes the dependence structure of the random variables.

Using this result, it is clear that in order to obtain the joint distribution of any set of random variables it
is sufficient to approximate the unique copula C that satisfies equation (35). In practice, it is necessary to
estimate, using a semi-parametric approach, the dependence parameter(s) of the copula model that best
fits the empirical data. The theory on copulas has defined different families which suit distinct types of
data. Among these, the Archimedean Family is popular because the copulas in this family allow to model
dependence in high dimensions with only one parameter; which is convenient in practical applications.
The Gumbel copula, which is an Archimedean copula, appears naturally in the analysis of dependence
between financial series as it is usually used to model variables with heavy-tailed distributions (Carmona,
2004). Given that our financial variables are indeed heavy-tailed, we will estimate the dependence between
them using a Gumbel copula.

Therefore, to estimate the risk faced by the sovereign it is crucial to understand the dependence structure
of the put options computed before, and as we are studying extreme events, the copula methodology allows
us to model the dependence of the tails of these distributions explicitly. In this way, we estimate what
would be an extreme but possible loss in the financial system.

4.2. Empirical Strategy Revisited

In order to estimate the risk measures of our portfolio we use Monte-Carlo simulations, sampling from
the joint distribution of the put options. As explained in Section 4.1, the joint distribution is defined by
the marginal of each put and the copula between them. Thus, in estimating the risk measures for our
portfolio we require a two-step process: First, we estimate the marginal distribution of the expected LGD

12See Sklar (1959).
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of each bank and then we fit a copula to describe the dependence between the random variables (i.e. the
puts).

4.2.1. Fitting Extreme-Value Distributions

In estimating the marginal distribution of the expected LGD, we closely follow the approach suggested
by Carmona (2004). The author underscores the fact that traditional density estimators (such as kernel
density estimators or histograms) cannot estimate the tails of the distribution precisely, because there
are not enough data points there. Consequently, he suggests the use of a semi-parametric approach
involving Extreme-Value Theory (EVT). Under this method, one uses standard nonparametric techniques
to estimate the center of the distribution whilst parametric techniques are used to estimate the polynomial
decay of the density in the tails (see Zivot & Wang (2006) and Becerra & Melo (2008)).

In applying this semi-parametric approach, we use monthly data on put prices (i.e. expected loss given
default) for the period comprised between September:2001 - March:201113. An important consideration
here is which theoretical distribution to use in the fit of the tails. In overcoming this minor impasse,
we turn to Figure 3, which depicts the Quantile-Quantile plot of the the empirical distribution of the
option prices against that of the standard normal. The presence of leptokurtosis on the right tail of the
distribution is readily apparent14. Hence, in trying to fit a theoretical distribution to the tail of our data,
we use a class of extreme-value distributions known as Generalized Pareto Distributions (GPD). These
distributions allow for a large number of unusually large extremes in each sample, a characteristic that
is evident in our put prices.

Thus, the question is how to characterize such a distribution for our data. Said class of distributions
has a density that decays polynomially, and the task of the researcher is then to estimate the degree
of the polynomial decay in the tails (i.e. to estimate the shape parameter, ξ). In doing so, we use a
semi-parametric approach based on the Peaks over Threshold (POT) method. In a nutshell, this method
consists of defining an overall threshold and extracting all points above that threshold to then develop a
distributional model for these points. The GPD discussed above provides a useful distributional model
for univariate extreme value data since it indicates what type of extreme value model is appropriate15.
Schematically, we abide by the following steps in fitting a marginal extreme-value distribution to the
tails16:

I. Using a Q-Q plot we determine which cut-off value (i.e. the quantile) should separate the tail from
the bulk of the distribution.

II. Once we have determined such a quantile, we can calculate the probability mass beyond this point,
that is, the percentage of data points that will comprise the tail.

13We also replicated the exercise using the following sub-samples: September:2001 - December:2008, September:2001 -
June:2009, September:2001 - December:2009 and September:2001 - June:2010. The empirical strategy is analogous to the
one described below.

14Note that the distribution of the expected loss given default has no lower/left tail, since losses are bounded at 0.
15The type of model will depend on the sign of ξ. Namely, ξ = 0 is equivalent to an extreme value Gumbel distribution;

ξ > 0 is equivalent to an extreme value Fréchet distribution; and ξ < 0 is equivalent to a reverse Weibull distribution.
16In the particular case of the put options here used, we need only fit the GPD to the right tail of the distribution

(recall that the expected LGD has no left tail). However, the procedure is described for the general two-tailed case for
completeness.
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III. We then use a POT Plot, which graphs the maximum likelihood estimates of the shape parameter
ξ as a function of the threshold value for each tail of the distribution of the monthly put prices (see
Figure 4).

IV. Using this visual aid we define a threshold (and ultimately a value for ξ) by weighting two consid-
erations:

i. That the threshold is such that the percent datapoints above (below) the threshold for the
right (left) tail are approximately equal to those suggested by examining the Q-Q plot.

ii. That the estimated value for ξ is robust to small changes in the threshold value (i.e. that the
line depicted in Figure 4 is “flat" in the neighborhood of the chosen threshold).

V. Having chosen a value for ξ we fully characterize the GPD fitted to our data, and all that is left is
to examine the goodness-of-fit of such a distribution.
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Figure 3: Q-Q Plot of Put Option Prices, by Bank
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Figure 4: Maximum Likelihood Estimates of the Shape Parameters for the Right Tail, by Bank
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In the particular case of the put prices here considered, an examination of the Q-Q plots reveals that
significant deviations from the bulk of the standard normal distribution generally occur 1 deviation away
from the mean. On a one-tailed distribution, this accounts to roughly 16% of the probability mass.
Hence, in choosing our thresholds we try to account for roughly this percentage, while at the same time
guaranteeing robustness in the estimated ξ. The fit of our GPDs can be visually assessed in Figure 5. It
is clear that the GPD does a good job in accounting for the extreme losses present in our empirical data.
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Figure 5: Verifying the Fit of the GPD on the Put Price Data, by Bank
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4.2.2. Estimating a Copula Model

The second and final step in calculating the risk measures for our puts portfolio is to estimate the degree
of dependence between the random variables via a copula model. As mentioned in Section 4.1, a copula is
the joint distribution of uniformly distributed random variables, and so we must first transform our put
price data in order to implement this model. The required procedure is simple, and requires us to make
use of the inverse transformation method (or Smirnov transform), which states that if X is a continuous
random variable with cumulative distribution function FX , then the random variable Y = FX (x) has a
uniform distribution on [0,1].
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Here, an important caveat applies: since the put price data is comprised primarily by zeros, the trans-
formation does not generate a uniformly distributed random variable and therefore thwarts the use of
the copula as the appropriate model to capture the dependence between the variables. However, rather
than giving up on the method altogether, we make an additional assumption on the joint behavior of the
expected LGD of the banks under study. In particular, we assume that the dependence structure between
these variables is identical to that between the equity returns of the banks. Hence, we can estimate the
dependence parameter between the equity returns and use this same parameter to characterize the
copula model of the put prices. We believe the strength of this assumption lays in the fact that, if equity
returns appropriately reflect the market’s valuation of the bank’s net worth, then joint movements in
these variables should reflect the dependence structure between the expected LGD of the banks, as these
are a direct function of the bank’s equity value.

Thus, in estimating the copula model, we use monthly data on the continuously compounded (monthly)
return on equity prices, for the period comprised between October:2001 - April:201117. However, one of
the assumptions in the estimation of the copula parameter is that the data used comes from an i.i.d.

sample. In practice, this assumption implies the data should not exhibit any type of pattern or temporal
regularity, a requirement almost implausible for financial variables. Therefore, utilizing the usual tools
in time series analysis, we identify a VAR(p) - GARCH(p,q) model on the four put option price series
and work on the residuals, as suggested in Grégoire et al. (2008). The approach followed consisted of the
following steps:

I. We fit a VAR(4) model18 and use the resulting residuals from this model as our “new" returns

II. We model the conditional volatility of the “new" returns using a GARCH(1,1) model, and obtain
the “weakly stationary returns" (WS returns) as the residuals of this model

III. We check that these WS returns effectively behave like weakly stationary variables

IV. We fit a marginal distribution to the data following the steps described in Section 4.2.1

V. Using the inverse transformation method, we obtain uniformly distributed random variables

V I. Finally, we estimate the parameter of a copula of the Gumbel (or logistic) family. The estimation
is based on the inversion of Kendall’s tau method19.

Residual diagnostic tests to verify the suitability of the VAR-GARCH model used can be found on Table
3 in Appendix B. In general, the tests show that no significant autocorrelation or ARCH effects persist.
Moreover, the appropriateness of the estimated GPD on our data can be verified by looking at the fit
of such a distribution on the tails, which is shown in Figure 6. Again, the GPD seems to get the job

17We also replicated the exercise using the following sub-samples: October:2001 - December:2008, October:2001 -
June:2009, October:2001 - December:2009 and October:2001 - June:2010. The empirical strategy is analogous to the
one described below.

18The order of the estimated VAR was chosen by minimizing the AIC and HQ information criteria.
19In calculating the dependence parameter of our copula model, we use several estimation methods. Namely, maximum

pseudo-likelihood, inversion of Kendall’s tau and inversion of Spearman’s rho. In deciding which estimated parameter to
use to characterize the dependence between the variables, we first checked the statistical significance of the coefficient, and
then chose the method which yielded the lowest standard error.
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done when it comes to capturing distributions with extreme events. The uniformity of the transformed
variables was checked using the Kolmogorov-Smirnov test and can be visually assessed in Figure 720.

Figure 6: Verifying the Fit of the GPD on WS Equity Returns, by Bank
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20Results of the Kolmogorov-Smirnov test can be found in Appendix C. Additionally, the POT plots used to estimate the
shape parameter of the GPD for each bank and the Q-Q plots of the uniform distribution against the sample quantiles of
our transformed variables are also included in this Appendix.
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Figure 7: Histogram of Transformed WS Equity Returns, by Bank
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5. Simulations and Risk Measures

Once we have estimated the marginal distributions of the put option prices, as well as the dependence
between the variables, we can generate multivariate random samples from the joint distribution of the
expected LGD. This is because the joint distribution can be fully characterized by the marginal distri-
butions and the copula, as explained in Section 4.1. Indeed, the first component of a random sample
generated from our estimated copula forms a univariate sample uniformly distributed on [0,1]. Thus,
applying the quantile function of the first estimated marginal GPD effectively generates a sample from
such a distribution. The same can be done with the second, third and fourth component in the random
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sample from the copula model. By definition, these multivariate random samples not only have the right
marginals, but also the right copula (Carmona (2004)). Thus, in order to calculate our risk measures we:

I. Generate a random sample of size N × 4, where N is the number of simulations, from the Gumbel
copula with the estimated dependence parameter.

II. We transform each uniform simulated sample by applying the inverse cdf (i.e. the quantile func-
tion) of the estimated probability distribution, so that the resulting sample has the estimated GPD.

III. We define the Government’s implicit bailout as the sum of the simulated expected LGD of each
bank.

IV. Since we have N possible one-month-ahead loss scenarios, we can effectively characterize the distri-
bution of the implicit bailout from the government, and use this distribution to calculate our risk
measures (i.e. VaR and ES).

Calculating both the VaR and ES using Monte Carlo simulations is fairly straightforward. Since we have
a simulation of possible one-period-ahead losses obtained from the joint distribution of the put option
prices, the former is nothing more than an empirical quantile, whilst the latter is the arithmetic mean of
the losses above and including the VaR.

In our particular exercises, we use 1 million simulations and a confidence level of 99% to calculate our
risk measures. The latter are represented graphically in Figure 8, where we also included the mean and
median expected LGD for completeness, employing the theoretical framework. Under this assumptions,
we find the worst expected loss that will only be exceeded with a probability of 1% within a one-month
horizon is COP$1.15 trillion (t) (around US$635 million), while the average loss should that 1% situation
materialize, amounts to COP$1.17 t (around US$645 million). These losses are not significant and
represent less than 1% of 2011’s first quarter GDP, so that they do not pose an immediate threat to
financial or overall macro stability. The latter is due to at least two important factors. On the one
hand, we are only considering the 4 largest commercial banks, and Colombia’s financial system has many
important non-bank institutions, so analyzing only a specific fraction of the whole system is bound to
bias the impact on the downside. Additionally, Colombia’s banking system is fairly traditional (i.e. banks
are almost exclusively dedicated to traditional loan operations and their investments are almost entirely
devoted to buying safe government securities) and regulation is highly conservative. These factors make
asset volatility relatively low, which coupled with low leverage levels (compared to those seen in the U.S,
in the pre-crisis period)21 implies low probabilities of default and hence, a small expected LGD.

The next step in the analysis is to consider the behavior of the traditional risk measures here considered
(VaR and ES) during different moments of our period of analysis. In order to do this, we defined four
sub-samples: i) September:2001 - June:2009, ii) September:2001 - December:2009, iii) September:2001 -
June:2010 and iv) September:2001 - December:2010. For each one of these sub-samples we calculated
both the VaR and the ES as well as the bank-specific contribution to the system-wide loss.

21Average gross balance sheet leverage, calculated as the ratio of total assets to total book equity, for the four banks here
considered stood at 7.4 in April, 2011. This proportion is very similar to that of the entire financial system (7.1 times).
Meanwhile, between 2002Q1 and 2007Q2, average leverage for the 17 largest commercial banks in the U.S. reached 12.5,
with a sizeable maximum of 17.6 (Wolff & Papanikolaou (2010)).
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Figure 8: Distribution of the Expected LGD
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Results of the expected loss due to default using both the BSM and theoretical framework can be checked
in Tables 1 and 2. Not surprisingly, when using the theoretical default probability and distance-to-distress,
the VaR and the Expected Shortfall for all the banks is greater than when using the BSM calculations.
Again, this is a direct implication of the lower probability of default that results from the BSM approach.
More importantly, it is relevant to mention that the risk measures calculated are relatively stable through
time, independent of the framework used (i.e. BSM or theoretical). This is not only desirable from a
policymaking perspective, as one would not want regulatory charges to be volatile, but also seems to be
an indication of the robustness of the methodology here considered.

As mentioned above, the methodology implemented here allows us to approximate the multivariate density
of these losses, by means of their marginal distributions and a measure of dependence (i.e. a copula). The
simulations obtained from this function can be used to determine the contribution of each institution to
the total expected LGD, which can be helpful in multiple ways. On the one hand, it allows us to identify
the most systemic and vulnerable agents of the sample. Moreover, it can help us to determine the impact
that exogenous shocks or changes in the regulatory framework can have over the size and allocation of
systemic risk. Finally, it provides an useful guideline in determining the individual capital charges that
the regulator should impose given the contribution of each bank to the externality.

Using the BSM model’s results, we see that the bank that contributes the greatest percentage to the
total expected loss is Bank D, which accounts for roughly 94% of the VaR and 92.4% of the ES, while
the bank with the lowest expected LGD is Bank C, which represents close to 1.4% of the risk measures
considered. The percentages for Bank D fall under the theoretical framework to around 76%, though
it still remains as the highest contributor to aggregate losses in both of the risk measures considered.
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However, it is noteworthy that under this framework Bank B represents an important share of both the
VaR and ES, raising the corresponding share from 2% and 3%, in the BSM exercise to around 15%
and 14,6%, respectively. It is important to note that the individual contributions have not increased
significantly in the last two years, which implies that the systemic importance of each bank has not
changed in the last couple of years.

Furthermore, we consider the theoretical model results more suitable for regulatory purposes, because they
provide a more acid scenario for all the banks considered. In addition, using the theoretical framework
implies a less concentrated bank-specific contribution to aggregate risk. Even when Bank D accounts for
most of the expected losses in all the periods here evaluated, other institutions have a greater importance
in the aggregate cost or have at least increased their relevance during this period. Hence, if one where to
impose capital charges, or to force the constitution of a resolution fund with the sole purpose of providing
the necessary funds for the orderly unraveling of systemically important institutions, the theoretical
framework would entail a higher degree of risk-sharing between institutions.

On a final note, both the mean and median expected LGD deserve an added remark. Though we do not
consider these statistics as the most appropriate in terms of calculating risk-based regulatory charges, we
consider their usefulness in terms of macroprudential supervision fundamental. Our risk measures are,
by definition, reflecting a worst-case scenario, and so they are likely to react to periods of build-up of
risk in a sluggish manner. In contrast, the mean and median measures should readily reflect a higher
joint default probability, and in this sense, provide a natural complement to the individual probabilities
of default calculated in Section 3.2. Hence, given their potential to detect period of risk build-up, we
strongly believe in their relevance as ideal early-warning indicators.

Table 1: Individual Contribution to System-Wide Risk Measures
(using BSM Distance-to-Default)

Value at Risk (1%)

(in trillions of COP$) (% of total expected loss)
Period Bank A Bank B Bank C Bank D TOTAL Bank A Bank B Bank C Bank D
Jun-09 0.026 0.022 0.013 0.870 0.931 2.83% 2.32% 1.44% 93.42%
Dic-09 0.026 0.018 0.013 0.845 0.903 2.91% 1.99% 1.48% 93.62%
Jun-10 0.025 0.017 0.013 0.873 0.928 2.66% 1.81% 1.43% 94.09%
Dec-10 0.024 0.017 0.013 0.873 0.928 2.63% 1.84% 1.42% 94.11%
Mar-11 0.022 0.025 0.010 0.871 0.928 2.34% 2.64% 1.12% 93.90%

Expected Shortfall

(in trillions of COP$) (% of total expected loss)
Period Bank A Bank B Bank C Bank D TOTAL Bank A Bank B Bank C Bank D
Jun-09 0.026 0.029 0.013 0.873 0.941 2.74% 3.11% 1.39% 92.76%
Dec-09 0.026 0.029 0.013 0.845 0.912 2.80% 3.19% 1.42% 92.59%
Jun-10 0.025 0.037 0.013 0.873 0.948 2.64% 3.89% 1.37% 92.10%
Dec-10 0.025 0.028 0.013 0.873 0.939 2.71% 2.98% 1.38% 92.94%
Mar-11 0.025 0.028 0.013 0.873 0.940 2.71% 3.01% 1.38% 92.90%
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Table 2: Individual Contribution to System-Wide Risk Measures
(using Theoretical Distance-to-Default)

Value at Risk (1%)

(in trillions of COP$) (% of total expected loss)
Period Bank A Bank B Bank C Bank D TOTAL Bank A Bank B Bank C Bank D
Jun-09 0.056 0.17 0.0432 0.888 1.161 5.48% 14.33% 3.71% 76.46%
Dec-09 0.065 0.156 0.044 0.880 1.145 5.67% 13.64% 3.85% 76.84%
Jun-10 0.065 0.147 0.043 0.883 1.138 5.70% 12.95% 3.81% 77.54%
Dec-10 0.065 0.148 0.041 0.886 1.139 5.66% 13.01% 3.58% 77.74%
Mar-11 0.063 0.171 0.039 0.874 1.147 5.48% 14.92% 3.37% 76.23%

Expected Shortfall

(in trillions of COP$) (% of total expected loss)
Period Bank A Bank B Bank C Bank D TOTAL Bank A Bank B Bank C Bank D
Jun-09 0.0637 0.166 0.043 0.887 1.161 5.48% 14.33% 3.71% 76.46%
Dec-09 0.064 0.169 0.044 0.893 1.169 5.48% 14.44% 3.72% 76.35%
Jun-10 0.064 0.167 0.043 0.892 1.166 5.51% 14.31% 3.72% 76.46%
Dec-10 0.064 0.168 0.043 0.892 1.166 5.45% 14.39% 3.70% 76.46%
Mar-11 0.064 0.171 0.043 0.892 1.170 5.45% 14.58% 3.70% 76.28%

6. Concluding Remarks

The financial crisis of the late 2000’s sparked a renewed interest on the close link between financial
and sovereign risk, and more notably, underscored the significance of identifying systemically important
institutions and developing mechanisms for the latter to internalize the externalities they create on the
economy, given a default scenario.

Using monthly market data for the period comprised between September:2001 - March:2011, we calcu-
lated bank-specific probabilities of default and expected losses given default. Consequently, we estimated
the joint distribution of such expected losses and found the system-wide expected cost for the government
given the implicit bailout option. Our results suggest that even though systemic risk is currently not a
major concern in the Colombian banking system, it is necessary to enhance the supervisory and regula-
tory framework to include quantitative measures of this risk. As Colombia’s financial sector continues
deepening, interactions between institutions and across different markets will undoubtedly become more
complex, potentially increasing the likelihood of a systemic event materializing. Moreover, given the
seemingly good-health exhibited by Colombian banks in the last years and the fact that we are currently
on the upside of the business cycle, the timing is optimal to impose additional capital charges.

In practical applications, we suggest working with the theoretical probability of default and hence with
the risk measures that arise from using the puts portfolio derived from it. From a macroprudential and
regulatory view, conservatism is desirable, and hence we consider the worst-case scenario (i.e. the method-
ology that yields the highest expected losses). Moreover, the possibility of visualizing the contribution
of each bank on system-wide losses is also fundamental from a regulatory perspective. The final report
of the Financial Regulatory Reform presented by the Department of the Treasury in the U.S., proposed
that capital requirements for large, interconnected firms should reflect the large negative externalities
associated with the financial distress or disorderly failure of each firm and should, therefore, be above
prudential minimum capital requirements during stressed economic and financial times (Department of
The Treasury. Financial Regulatory Reform. (2009)). Indeed, the Dodd-Frank Act, in its original draft,
suggested that too-big-to-fail institutions should create a US$50 billion fund, whose purpose would be
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to provide for the orderly unraveling of systemically important institutions without forcing taxpayers to
cover the losses (Senate Committee on Banking, Housing, and Urban Affairs (2010)). In this sense, our
risk measure allows for an initial estimate of the size of the fund, as well as to the individual contributions
of each bank.

Additionally, we recommend the use of bank-specific probabilities of default, coupled with the mean and
median expected loss given default that arises from the simulated one-month-ahead joint distribution of
put prices. These variables are ideal candidates as forward-looking measures of risk accumulation, and can
therefore provide early-warning signals to policymakers with respect to the possible build-up of financial
imbalances and the specific institutions behind them. This information could accelerate preemptive
supervisory action, reducing the likelihood of risk effectively materializing and thus, meliorating costs for
the government and the system as a whole.

Nonetheless, our understanding of systemic-risk is still quite limited. Future research should ideally inte-
grate the non-banking system into the quantification of this risk, as we believe that future vulnerabilities
could very well arise from this sector of the financial system. However, even with the self-proclaimed
constraints that our analysis has, we believe that continually monitoring probabilities of default and
the joint expected loss given default, should shed light in anticipating future stress scenarios. As such,
our approach offers an useful instrument both from a macroprudential as well as a financial stability
perspective.
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Appendix A

The recent evolution of the variables in our model which can be directly quoted in the market can be
viewed in Figure 9 below. From here it is worth noting that all 4 banks have shown a significant increase
in their liabilities, thus augmenting the size of their balance sheets. Moreover, this increase in funding
has been coupled with three important factors. Firstly, an increment in the value of equity, especially
for Banks A and B, which also happen to be the banks experiencing the largest growth in liabilities.
The importance of this parallel growth is that it implies that there should be no capital restrictions on
increasing the asset-side of the balance sheet as well. Secondly, equity has grown in an atmosphere of
relatively low levels of volatility; the lowest of the last 10 years for all 4 institutions. The latter should
imply, ceteris paribus, lower asset volatility. Finally, other than the hike observed in interest rates between
2006-2008, the last few years have seen a pronounced decrease in the cost of money, effectively placing
interest rates in the lowest levels of the past decade.

Figure 9: Evolution of Observable Variables in the Model
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Figure 10 confirms this initial intuition. The market value of assets implied by the model has effectively
presented a steady growth path, not unlike that of the liabilities. Additionally, its volatility resembles
the trend observed in that of equity, also constituting the lowest levels of the past decade.
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Figure 10: Evolution of Non-Observable Variables in the Model
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Appendix B

Table 3: Residual Diagnostics on the VAR(4)-GARCH(1,1) Model Residuals

Univariate Tests

Test Null Hypothesis Lags Test Statistic P-Value

Residual Diagnostics on the residuals of the model for Bank A
Ljung-Box No serial correlation 24 15.023 0.920
Box-Pierce No serial correlation 24 13.150 0.964

Engle No ARCH effect 6 2.734 0.841
Residual Diagnostics on the residuals of the model for Bank B

Ljung-Box No serial correlation 24 24.224 0.449
Box-Pierce No serial correlation 24 21.044 0.636

Engle No ARCH effect 6 1.962 0.923
Residual Diagnostics on the residuals of the model for Bank C

Ljung-Box No serial correlation 24 9.584 0.996
Box-Pierce No serial correlation 24 8.110 0.999

Engle No ARCH effect 6 3.963 0.682
Residual Diagnostics on the residuals of the model for Bank D

Ljung-Box No serial correlation 24 25.865 0.360
Box-Pierce No serial correlation 24 21.986 0.580

Engle No ARCH effect 6 0.708 0.994

Multivariate Tests

Test Null Hypothesis Lags Test Statistic P-Value

Breusch-Godfrey No serial correlation 6 19.059 0.266
Portmanteau No serial correlation 12 125.421 0.548

Portmanteau (Adjusted) No serial correlation 12 135.225 0.314
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Appendix C

Figure 11: Histogram of Put Option Prices, by Bank
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Table 4: Two-sample Kolmogorov-Smirnov Test

Null Hypothesis Test Statistic P-Value

Both series come 0.0375 0.9996
from the same 0.0379 0.9995

continuous distribution 0.0375 0.9996
(in this case a uniform) 0.0375 0.9996
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Figure 12: Maximum Likelihood Estimates of the Shape Parameters - Bank A’s Equity Returns
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Figure 13: Maximum Likelihood Estimates of the Shape Parameters - Bank B’s Equity Returns
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Figure 14: Maximum Likelihood Estimates of the Shape Parameters - Bank C’s Equity Returns
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Figure 15: Maximum Likelihood Estimates of the Shape Parameters - Bank D’s Equity Returns
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Figure 16: Q-Q Plots of Uniform Distribution Against Sample Quantiles, by Bank
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