
Testable Restrictions of General Equilibrium
Theory in Exchange Economies with

Externalities.

Andrés Carvajal
Brown University and Banco de la República

Box B, Providence, RI 02912.

E-mail: Andres_Carvajal@Brown.edu

October 4, 2002

Abstract

The theory of general equilibrium was criticized for its apparent lack of
testable implications, as seemingly implied by the results of Sonnenschein,
Mantel and Debreu in the Seventies. This view was challenged by the re-
sults of Brown and Matzkin (1996), which showed the existence of testable
restrictions on the equilibrium manifold of exchange economies. This pa-
per studies a problem similar to the one posed by Brown and Matzkin, for
the case of general equilibrium in the presence of externalities. The nat-
ural definition of equilibrium in such case is the Nash-Walras equilibrium
concept. I first consider the case of strategic externalities, where I assume
that each player chooses a consumption bundle, subject to some budget,
and a strategy from a continuous domain, and where the utility of each
individual depends on his consumption and on the strategies chosen by all
the players. I also consider the case of consumption externalities, in which
each individual’s utility depends on his consumption of all commodities
and on the consumption of some particular commodity by all individuals.
The results obtained here are rather negative in that they point towards
the unfalsifiability of the equilibrium hypothesis. Under the assumption
that one can observe individual choices for the externality, I find that
there exist some extremely mild testable restrictions. This, however, is
not a pure extension of the Brown-Matzkin result, since some individual
decisions are assumed to be observed. If there is no information on in-
dividual choices, I find that the equilibrium concept imposes no testable
restrictions. This occurs unless one imposes further assumptions, such as
weak separability.

Keywords : Nash-Walras equilibrium, externalities, revealed prefer-
ences, testable restrictions.
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1 Introduction:
After its elegant and precise development by Arrow, Debreu and McKenzie in
the mid Twentieth Century, the model of general equilibrium has become the
foundation of most theoretical developments in economics. Issues of existence,
determinacy and optimality were favorably solved and, with this, the model
became the underpinning for theoretical analysis in practically all fields in eco-
nomics and the basis of many an economic policy recommendation. All this,
despite the troublesome result often referred to as the “Sonnenschein-Mantel-
Debreu theorem,” which many came to believe implied the unfalsifiability of the
Arrow-Debreu theory and cast doubts about the scientific character of general
equilibrium, at least according to a commonly accepted epistemologial posi-
tion that maintains that theories are scinetific only if they are falsifiable. Such
position, known as “falsificationism,” was first and foremost defended by Karl
Popper and was first brought to economics by Samuelson (1947).1 According
to it, it is precisely the existence of testable implications, which the researcher
should ex ante expect the theory to be at odds with, what distinguishes scien-
tific from esoteric knowledge. Thus, despite the simplicity and analytical appeal
of the general equilibrium theory, the belief that it imposed no testable implica-
tions was problematic because, if correct, it would imply that the theory could
only be believed out of faith in its assumptions and principles, but lacked any
statements about empirical observations that could be conceivably refuted upon
contrast with real data.
The position that from the Sonnenschein-Mantel-Debreu theorem it followed

that general equilibrium theory imposed no, or hardly any, testable restrictions
permeated to the literature. Arrow (1991) wrote that from this theorem one
should conclude that “in the aggregate, the hypothesis of rational behavior has
in general no implications,” while according to Hansen and Heckman (1996),
“...as a paradigm for organizing and synthesizing economic data, [general equi-
librium theory] poses some arduous challenges. A widely accepted empirical
counterpart of general equilibrium remains to be developed.” Most explicitly,
a basic textbook in microeconomic theory, Mas-Collel et al (1995), categorized
the results of the Sonnenschein-Mantel-Debreu theorem as saying that “anything
goes,” in the sense that “...anything satisfying...” the very mild restrictions of
the Sonnenschein-Mantel-Debreu theorem “...can actually occur.”
In contrast, it has recently been shown that this view of the problem of falsi-

fiability of general equilibrium theory is overly pessimistic. Brown and Matzkin
(1996) and Chiappori et al (2002) have shown that some information at the indi-
vidual level may generate nontrivial testable restrictions, even if it reveals noth-
ing about actual individual choices, and only describes individual constraints.

1Both Antonelli (1886) and Slutsky (1915) had studied the problem of what conditions
were implied by the hypothesis of individual rationality of the consumers, from a differential
perspective. But it was Samuelson who emphasized the emptiness that economic theories
exhibited when lacking refutable implications. He also tackled the problem from a different
perspective, namely from algebraic, rather than differential, implications. Significant dontri-
butions from this perspective were also Houthakker (1950), Richter (1966) and Afriat (1967).
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From a theoretical perspective, these results provide firm ground to establish
the Arrow-Debreu model as scientific knowledge. From an economic policy
perspective, it is also refreshing to know that the general equilibrium hypothesis
is refutable from real data, as this implies that there exists tests to be performed
before implementing policy recommendations based on the model itself.
In this paper, I argue that this optimistic perspective does not hold when one

assumes a very simple change to the principles of general equilibrium, namely
the presence of externalities. Specifically, I show that the natural concept of
competitive equilibrium in this context, the Nash-Walras equilibrium concept,
constitutes an unfalsifiable hypothesis, unless the researcher possesses specific
information regarding actual individual choices, and that even in this case, the
restrictions that the theory imposes are extremely mild.
The problem considered here appears important given the well-known re-

sults on welfare properties of Nash-Walras equilibrium, but in particular those
recently obtained by Geanakoplos and Polemarchakis (2001), according to which
the equilibrium allocations are typically constrained Pareto-suboptimal, a result
that calls for policy interventions when there are external effects, subject to the
policy authority having available the right information.
This paper is organized as follows. In the next section, I briefly review the

relevant literature and distinguish my results form others that already exist.
Then, in the following two sections, I state and solve the falsifiability problem
considering two types of externalities. Strategic externalities are those in which
the external effects come from individual actions other that consumption of com-
modities. These actions need not be physically comparable between individuals,
their feasibility is not mediated by endowments or prices and decisions on their
regard bear no effect on the budgets of individuals. In contrast, consumption
externalities arise from the consumption of some commodities by individuals.
These consumptions are aggregable, in equilibrium their markets must clear,
given aggregate endowments, and individual decisions about them are subject
to budgetary considerations, given prices. Although one can embed consump-
tion externalities as strategic externalities, as I illustrate in subsection 4.2, this
comes at a cost in terms of generality and simplicity of the results and I have
therefore chosen to treat the two cases as entirely independent. For both types
of externalities, after stating the problem and the conditions under which data
are to be considered consistent with Nash-Walras equilibrium, I show that if
individual choices of the externality are observed, then some restrictions, some-
what similar but much weaker than the ones obtained by Brown and Matzkin
(1996), are imposed by the theory. Then, it is shown that without such individ-
ual level information the theory is unfalsifiable. This last issue is less relevant
in the case of strategic externalities, where no observation of individual actions
means no information about the externality at all. In the case of consumption
externalities, observation of all prices implies that the researcher knows at least
some “summary statistic” about individual choices. My result is that the theory
imposes no restrictions on these summary statistics, even under full information
about the constraints of all consumers, a result that contrasts with the ones of
Brown and Matzkin (1996) and Chiappori et al (2002). The latter is true un-

3



less one adds further conditions to the hypothesis. In particular, I show that
requiring weak separability on the private commodities restores the refutability
of the equilibrium hypothesis.
All my results are based on the assumption that just a finite set of individual

constraints and prices is observed, as in Brown and Matzkin (1996), and not on
the knowledge of the whole equilibrium manifold, as in Chiappori et al (2002).
I find this approach to be more convenient from an empirical perspective.

2 Review of the literature:
The first study of the problem of falsifiability of general equilibrium theory
without observation of individual choices was Sonnenschein (1973), where the
following problem was posed: suppose that one observes a function mapping
prices into quantities of commodities; what conditions must this function sat-
isfy if it is to be the aggregate excess demand function of an exchange economy
under standard assumptions? Well-known necessary conditions are continuity,
homogeneity of degree zero and Walras’ law. The surprising result was that
these very mild conditions exhaust all the restrictions of the theory, as shown
by Mantel (1974) and Debreu (1974): for any function that satisfies these three
conditions, there exists an economy, with at least as many consumers as com-
modities, such that, away from zero prices, the function is its aggregate excess
demand function. This result is commonly referred to as the Sonnenschein-
Mantel-Debreu theorem.2

The conclusion was formed that if the condition that there are at least as
many consumers as there are commodities is acceptable, then the restrictions
of utility maximization disappear when one does not observe individual choices.
This interpretation was challenged by Brown and Matzkin (1996), who showed
that general equilibrium theory is falsifiable, even without observing individual
choices, provided that there exists information about individual budgets. The
novelty of their approach resided in that they did not analyze the aggregate
excess demand function, which from an empirical point of view is inconvenient,
as under the general equilibrium hypothesis it can only be observed precisely
when it vanishes, but focused on the equilibrium manifold, where variations of
individual endowments are accounted for. By varying individual endowments,
Brown and Matzkin showed a conflict that may arise between the two principles
that constitute the basis of general equilibrium: individual rationality and mar-
ket clearing. Specifically, they showed an important tension between aggregate

2Mas-Collel (1977) showed that there are no restrictions on the set of equilibrium prices
of an economy, Diewert (1977) showed that there are some restrictions on the derivatives of
the aggregate excess demand and Geanakoplos and Polemarchakis (1980) showed that these
are all the restrictions. A similar result for market demand functions was shown by Diewert
(1977) and Mantel (1977). Andreu proved that a conclusion similar to the Sonnenschein-
Mantel-Debreu applies to finite subsets of prices. Recently, Chiappori and Ekeland (1999)
showed that the Sonnenschein-Mantel-Debreu extends to the whole market demand function,
under smoothness assumptions. For a recount of the earlier part of this literature, see Shafer
and Sonnenschein (1982).
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feasibility and individual-wise satisfaction of the axioms of revealed preference,
the first of which is necessary condition for market clearing, and the second
of which is equivalent to individual rationality. This tension implied that not
every data set of individual endowments and prices can be rationalized as com-
ing from observations of Walrasian equilibria in an exchange economy under
standard assumptions.
A similar approach, where individual endowments are taken into account,

was followed by Chiappori et al (2002), with the difference that they consider
the whole of the equilibrium manifold, rather that just some finite subset of it.
They find that “whenever data are available at the individual level, then util-
ity maximization generates very stringent restrictions upon observed behavior,
even if the observed variables are aggregate (e.g. aggregate excess demand or
equilibrium prices).” Furthermore, under the extra assumption that individuals
have preferences such that income effects do not vanish, they show that all the
restrictions of individual rationality are preserved upon aggregation, since it
is possible to recover individual preferences from the equilibrium manifold (at
least locally), uniquely up to ordinal equivalence. They also show that some
individual level information is necessary for falsification, since any smooth man-
ifold can be locally rationalized as resulting from utility maximizing agents,
whenever their number is at least as large as the number of commodities and
redistribution of endowments is allowed.
In this paper, I take the same approach as in Brown and Matzkin (1996),

which requires the observation of only a finite subset of the equilibrium mani-
fold. However, I assume that there exist externalities, so that the equilibrium
concept that applies is not simply the one of Walrasian equilibrium, but rather
the one of Nash-Walras equilibrium, in which individuals are assumed individu-
ally rational, taking as given not only prices, but also the choices of everybody
else. A related paper is Snyder (1999), where the problem of falsifiability of
the hypothesis of Pareto-efficient provision of a public good is studied.3 By an
application of the methodology of Brown and Matzkin to the analysis of public
goods via Lindahl prices, Snyder shows that the hypothesis is indeed falsifiable,
whenever information on market prices (not on Lindahl prices), production lev-
els and individual incomes is available. The differences between the contexts of
Snyder and mine are straightforward. First of all, she considers a commodity
which is a public good, whereas in my analysis of strategic externalities, the
actions that generate the external effect need not even be physically compara-
ble between individuals, and in the case of consumption externalities, although
they come from a comparable commodity, my assumptions are that this good is
rival. More importantly, Snyder focuses on a cooperative solution, whereas here
it is assumed that individuals act noncooperatively. Regarding the results, the
differences are also important: Snyder finds that the Pareto-efficiency hypothe-
sis is falsifiable without data on individual choices, whereas here I conclude that

3Less related extensions of the results of Brown and Matzkin are Kubler (2001), to intertem-
poral problems under uncertainty, and Carvajal (2002b), where preferences of individuals are
allowed to change randomly, but there is no uncertainty at the moment of making decisions,
nor are there any intertemporal links.
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this is not the case for the Nash-Walras hypothesis, and that even if individual-
level information about individual choices of the externality is available, the
restrictions that the hypothesis imposes are a priori far from harsh.

3 Strategic externalities:
Strategic externalities do not occur through markets. In this case, actions chosen
by individuals are abstract choices that need not even represent one common
physical object, when compared across agents. For example, one player’s action
may be the volume at which he listens to his music, while his neighbor’s action
may be the time at which he decides to do the laundry on Sundays. Both
decisions may affect both players’ well-being, and the decisions are therefore
subject to strategic interaction, but neither decision is a market choice: they are
not affected by prices nor do they change the disposable income of individuals.
Moreover, these actions are not subject to aggregation and no market is to clear
for the decisions to constitute an equilibrium. In this section, I consider the
problem of falsifiability of the hypothesis of Nash-Walras equilibrium under this
kind of externalities.

3.1 The model:

Consider an economy with a finite set of consumers, which I denote by I =
{1, ..., I}, with 2 6 I < ∞. Consumers in this economy make two decisions.
As in the standard general equilibrium model, they must choose a consumption
bundle. I assume that there is a finite number, L ∈ N, of commodities, so
that the consumption set for each individual is RL+. In this case, I assume
that individuals must also choose an action. For simplicity and concreteness,
I assume that each individual chooses his action from a nonempty interval of
the real line. Hence, analogous to the consumption set, I assume that each
individual i ∈ I has as space of conceivable actions the interval Ai =

£
0, ai

¤
,

where ai ∈ R+. I will use x ∈ RL+ to denote bundles of commodities, while for
each i ∈ I, ai ∈ Ai will denote an action.
Strategic externalities exist because each individual i ∈ I derives utility not

only from his own consumption, x ∈ RL+, and action, ai ∈ Ai, but also from
actions by all other players, which I will denote by

a−i ∈ A−i =
Y

j∈I\{i}
Aj

Formally, I assume that each individual i ∈ I has preferences represented by

U i : RL+ ×Ai ×A−i −→ R

As in the Walrasian framework, individuals make their decisions taking into
account only their own constraints. When consumer i ∈ I is endowed with
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wi ∈ RL+ and prices are p ∈ RL++, he chooses his demand for commodities
without violating his budget constraint

p · x ≤ p · wi

Similarly, I will assume that there may be further constraints to the action that
each i ∈ I may choose. These constraints are assumed to take the very simple
form of upper bounds to choices. Specifically, I will denote by ai ∈

£
0, ai

¤
such

upper bounds, and assume that individuals choose their actions from [0, ai],
which is analogous to the budget set.4

An economy is completely described by the set of players, I, their prefer-
ences

¡
U i : RL+ ×Ai ×A−i −→ R

¢
i∈I , their endowments, which I assume to be

strictly positive, (wi)i∈I ∈
¡
RL++

¢I
, and their constraints to actions (ai)i∈I ∈

A =
Q

i∈I A
i. Formally, an economy is a vectorn

I,
¡
U i, wi, ai

¢
i∈I

o
The hypothesis whose falsifiability I want to study is that individuals act

noncooperatively, in the sense that they behave as in the Nash solution concept
regarding their strategic interaction, and according to the Walrasian principles
regarding their market behavior. That is to say, I assume that each individual
i ∈ I, given his endowments wi ∈ RL++ and his constraints to actions ai, takes
also as given the prices p ∈ RL++ and the actions of all his opponents a−i ∈ A−i,
and maximizes his well-being, by maximizing U i (·, ·, a−i) : RL+ × Ai −→ R,
subject only to his constraints

p · x ≤ p · wi

ai ∈ [0, ai]

When prices are such that under this kind of behavior all markets clear, the
economy attains an equilibrium. Formally,

Definition 1 Given an economy

E =
n
I,
¡
U i, wi, ai

¢
i∈I

o
a Nash-Walras equilibrium is a vector¡

p∗, (x∗i , a
∗
i )i∈I

¢
∈ RL++ ×

Y
i∈I

¡
RL+ ×Ai

¢
such that

(∀i ∈ I) : (x∗i , a
∗
i ) ∈ Arg max

(x,ai)
U i
¡
x, ai, a

∗
−i
¢

s.t.

 p∗ · x 6 p∗ · ωi
ai ∈ [0, ai]
x > 0

4 I do not explore where these constraints come from and take them as given, as I do with
the endowments. I do not rule out the possibility that they are redundant (ai = ai), though.
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and X
i∈I

x∗i =
X
i∈I

ωi

Given an economy E , I will denote by NW (E) the set of all its Nash-Walras
equilibria. This set is the canonical definition of noncooperative equilibrium in
economies with strategic interaction. It is a well-defined equilibrium concept, in
the sense that it has been proven to be nonempty under standard assumptions.5

Given an economy E , if
¡
p∗, (x∗i , a

∗
i )i∈I

¢
∈ NW (E), then p∗ is said to be a

Nash-Walras equilibrium price vector of E, (x∗i )i∈I is a Nash-Walras equilibrium
allocation of E and (a∗i )i∈I is a Nash-Walras equilibrium profile of strategies of
E .
My goal in this section is to study the falsifiability of the hypothesis of Nash-

Walras equilibrium, based on data that does not include all the information
on individual choices. If one has full information on individual choices, then
the theory of revealed preference can be applied in a manner similar to its
application to games on continuous sets, as in Carvajal (2002a). Since strategic
externalities need not generate aggregate data, I will first assume that prices of
commodities and individual choices of actions (but not individual demands) are
observed and, hence, I will study the projection of the Nash-Walras set into the
space of prices of commodities and individual actions. For an economy E, this
projection is formally defined as:

NWPS (E) =(¡
p, (ai)i∈I

¢
∈ RL++ ×

Y
i∈I

Ai

¯̄̄̄
¯ ³∃ (xi)i∈I ∈ ¡RL+¢I´ : ¡p, (xi, ai)i∈I¢ ∈ NW (E)

)
Consistently, I define a data set as containing only information on prices,

individual endowments, individual upper bounds to individual actions and in-
dividual chosen actions, for a finite number of observations. Formally,

Definition 2 A data set is a finite sequence³³
pt,
¡
ωi,t, a

∗
i,t, ai,t

¢
i∈I

´´T
t=1

such that for each t ∈ {1, ..., T}

pt ∈ RL++

and for each t ∈ {1, ..., T} and each i ∈ I

ωi,t ∈ RL++
a∗i,t ∈ [0, ai,t] ⊆ Ai

5 See Ghosal and Polemarchakis (1997), where it is also shown that Nash-Walras equilibria
are typically determinate and Pareto suboptimal.
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This means that at each observation t ∈ T = {1, ..., T}, one has available,
for each individual i ∈ I, full information on his feasible set, as this set de-
termined by prices, pt, and endowments, wi,t, regarding commodities, and by
the constraint to his actions, ai,t. One also observes the action chosen by each
individual a∗i,t, but has no information about his chosen consumption, for which
all one observes is an aggregate summary statistic, pt.6

Under finite data sets, it may not always be reasonable to assume that one
has observed equilibria exhaustively. In that sense, it is convenient to take a
weak approach to the falsifiability problem, in which one requires that the ob-
served data be consistent with equilibrium, but does not assume or imply that
there cannot be other equilibria. When doing so, however, it is customary to im-
pose conditions that restrict the choice behavior of individuals in manners that
are interesting from the point of view of the theory. In this case, I impose con-
ditions that ensure that individuals spend all their wealth and that, given their
feasible sets and the actions of others, their choices are uniquely determined.
The exact sense in which data sets are going to be considered consistent with
the hypothesis of Nash-Walras equilibrium is given by the following definition:

Definition 3 A data set³³
pt,
¡
ωi,t, a

∗
i,t, ai,t

¢
i∈I

´´T
t=1

is said to be Nash-Walras-rationalizable (NW-rationalizable) if for each i ∈ I
there exists a function U i : RL+×Ai×A−i −→ R, continuous and satisfying that¡

∀a−i ∈ A−i
¢
: U i (·, ·, a−i) is Lipschitzian with constant Ma−i¡

∀a−i ∈ A−i
¢
: U i (·, ·, a−i) is strongly concave¡

∀ (ai, a−i) ∈ Ai ×A−i
¢
: U i (·, ai, a−i) is strictly monotone

such that for each t ∈ T³
pt,
¡
a∗i,t
¢
i∈I

´
∈ NWPS

³n
I,
¡
U i, wi,t, ai,t

¢
i∈I

o´
In this case, it is said that

¡
U i
¢
i∈I NW-rationalizes the data set.

Continuity is always plausible for functions representing preferences, as gen-
eral representability results have been found under this condition (Debreu (1954)).
It is imposed here because it implies that individual choices are always defined
(by Weierstrass’ theorem) and depend continuously on parameters, specifically
on actions by other consumers (by the theorem of the maximum). The Lipschitz
condition is imposed for technical reasons. It is weaker than differentiability,
but implies differentiability almost everywhere. Strong concavity and strict

6The assumption of finite data sets is identical to the one in Brown and Matzkin (1996)
and Snyder (1999), but contrasts to the approach in Chiappori et al (2002). Because of it, if
testable restrictions arise in this setting, they must be seen as nonparametrical.
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monotonicity also have technical use, but are actually imposed in order to rule
out trivial rationalizations in which individuals are indifferent between all out-
comes in their domains and, therefore, every triple composed by a vector of
prices, an allocation where markets clear and a profile of actions is a Nash-
Walras equilibrium. Both conditions have desirable implications: monotonicity
implies Walras’ law, whereas strong concavity implies that given prices, own en-
dowments and the actions of other players, each consumer’s choices are uniquely
determined and are therefore subject to the same axioms of revealed used by
Brown and Matzkin (1996).

3.2 Equilibrium inequalities:

The definition of rationalizability only states explicitly the requirement that
there exist utility functions consistent with the observed data. Implicitly, how-
ever, it also requires that there exist demands for commodities consistent with
the data and those utility functions. Revealed preference theory has provided
conditions under which one does not need to work with those two mathematical
objects, preferences and choices, in the sense that existence of the former is
equivalent to existence of the latter. As a first step towards the derivation of
testable restrictions, the following characterization of Nash-Walras equilibrium
deals only with individual demands at each observation, imposing on them the
conditions which make them equivalent to the approach via utility functions.
Before the characterization can be given, the following notation needs to be

introduced. Given a data set³³
pt,
¡
ωi,t, a

∗
i,t, ai,t

¢
i∈I

´´T
t=1

define, for each i ∈ I, the correspondence

T i : A−i ⇒ T

by
T i (a−i) =

©
t ∈ T | a∗−i,t = a−i

ª
Theorem 1 A data set ³³

pt,
¡
ωi,t, a

∗
i,t, ai,t

¢
i∈I

´´T
t=1

is NW-rationalizable if, and only if, for each i ∈ I and each t ∈ T there exist
x∗i,t ∈ RL+, V i

t ∈ R, vit ∈ RL++, ρit ∈ R, λ∗i,t ∈ R++, ς∗i,t ∈ RL+, µ∗i,t ∈ R+ and
η∗i,t ∈ R+ such that:

1. (∀i ∈ I) (∀t ∈ T ) : vit = λ∗i,tpt − ς∗i,t

2. (∀i ∈ I) (∀t ∈ T ) : ρit = η∗i,t − µ∗i,t

3. (∀i ∈ I) (∀t ∈ T ) : ς∗i,t · x∗i,t = 0, µ∗i,ta∗i,t = 0 and η∗i,t
¡
ai,t − a∗i,t

¢
= 0
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4. (∀i ∈ I) (∀t ∈ T ) : pt · x∗i,t = pt · ωi,t

5. (∀i ∈ I)
¡
∀a−i ∈ A−i

¢ ¡
∀t, t0 ∈ T i (a−i)

¢
:

V i
t0 6 V i

t + vit ·
¡
x∗i,t0 − x∗i,t

¢
+ ρit

¡
a∗i,t0 − a∗i,t

¢
with strict inequality whenever¡

x∗i,t0 , a
∗
i,t0
¢
6=
¡
x∗i,t, a

∗
i,t

¢
6. (∀t ∈ T ) :

P
i∈I x

∗
i,t =

P
i∈I ωi,t

Before the proof of the theorem, it may be useful to obtain intuition about
it, which is simple. Given a rationalizable data set, there have to exist, by de-
finition, individual demands x∗i,t, for each player i ∈ I and at each observation
t ∈ T , which are individually rational according to some preferences and clear
markets. The latter is condition (6), whereas condition (4) follows from strict
monotonicity (Walras’ law). Suppose for a moment that all the utility functions
that NW-rationalize the data set are differentiable with respect to consumption
and own actions. Then, conditional on a∗−i,t, condition (5) follows from concav-
ity of the utility functions (using its characterization via tangents),7 whereas
conditions (1), (2) and (3) would follow from Kuhn-Tucker’s theorem (as first-
order necessary conditions of each individual’s maximization problem). Now, I
am not assuming that the cross-sections of the utility functions for consumption
and own action are differentiable, but only that they are Lipschitzian. This is
a technical problem, and its solution is the content of lemma 4, in appendix 6,
which uses an analogous of the Kuhn-Tucker theorem via subdifferential calculus
(lemma 3).
Proof. Necessity: Let

¡
U i
¢
i∈I NW-rationalize the data set.

Fix t ∈ T . Since³
pt,
¡
a∗i,t
¢
i∈I

´
∈ NWPS

³n
I,
¡
U i
at , ωi,t, ai,t

¢
i∈I

o´
it follows by definition that there exists

¡
x∗i,t
¢
i∈I ∈

¡
RL+
¢I
such that³

pt,
¡
x∗i,t, a

∗
i,t

¢
i∈I

´
∈ NW

³n
I,
¡
U i
at , ωi,t, ai,t

¢
i∈I

o´
7This type of condition is usually known as “Afriat inequalities.” Incidentally, notice that

it implies that if for i ∈ I and t, t0 ∈ T , one has that vit = λ∗i,tpt, v
i
t0 = λ∗i,t0pt0 , a

∗
i,t = a∗

i,t0 ,
a∗−i,t = a∗−i,t0 , pt = pt0 and pt · x∗i,t = pt · x∗i,t0 , then x∗i,t = x∗

i,t0 . To see this, suppose not:
x∗i,t 6= x∗

i,t0 . Then, by this condition,

V i
t0 < V i

t + λ∗i,tpt ·
³
x∗i,t0 − x∗i,t

´
V i
t < V i

t0 + λ∗i,t0pt0 ·
³
x∗i,t0 − x∗i,t

´
and, therefore,

V i
t0 < V i

t

V i
t < V i

t0

an obvious contradiction.
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Fix one such
¡
x∗i,t
¢
i∈I . By definition,X

i∈I
x∗i,t =

X
i∈I

ωi,t

which implies condition (6).
Now, fix also i ∈ I. Again by definition,¡

x∗i,t, a
∗
i,t

¢
∈ Argmax

(x,ai)
U i
¡
x, ai, a

∗
−i,t
¢

s.t.

 p∗ · x 6 p∗ · ωi,t
ai ∈ [0, ai,t]

x > 0

and, then, the other five conditions follow from lemma 4, using

V i (·, ·) = U i
¡
·, ·, a∗−i,t

¢
Sufficiency: Fix i ∈ I. Define Γi as follows:

• γi1 = {1}

• for t ∈ {2, ..., T}

γit =

½
∅ if (∃t0 ∈ {1, ..., t− 1}) : a∗−i,t0 = a∗−i,t

{t} otherwise

• Γi =
S
t∈T γit

Clearly, ¡
∀t, t0 ∈ Γi : t 6= t0

¢
: a∗−i,t 6= a∗−i,t0

(∀t ∈ T )
¡
∃t0 ∈ Γi

¢
: a∗−i,t0 = a∗−i,t

the first of which implies that

ri = min
t,t0∈Γi:t6=t0

°°a∗−i,t0 − a∗−i,t
°° > 0

Fix ri ∈ (0, ri), and define

Ci =
[
t∈Γi

Bri/4

¡
a∗−i,t

¢
∩A−i

which is a compact set.
Define the function Ωi : A−i −→ A−i by

Ωi (a−i) = lex−min

Arg min
a∗−i,t∈

S
t0∈Γi

n
a∗−i,t0

o °°a−i − a∗−i,t
°°

12



where lex−min represents the component-wise lexicographic minimum on RI−1.
Define also, as in Matzkin and Richter (1991), the function h : RL×R −→ R,

by

h (x, a) =

q
k(x, a)k2 + 1− 1

This function is differentiable and strongly convex, and satisfies the following
properties

h (x, a) = 0⇐⇒ (x, a) = 0

h (x, a) > 0⇐⇒ (x, a) 6= 0

(∀l ∈ {1, ..., L}) :
∂h

∂xl
(·, ·) ∈ [0, 1)

∂h

∂a
(·, ·) ∈ [0, 1)

The last two properties imply that h is Lipschitzian with constant L + 1. To
see this, let (x, a) , (x0, a0) ∈ RL × R. By the mean value theorem, for some
(bx,ba) ∈ RL ×R, it is true that

h (x, a)− h (x0, a0) =
X

l∈{1,...,L}

∂h

∂xl
(bx,ba) (xl − x0l) +

∂h

∂a
(bx,ba) (a− a0)

from where

|h (x, a)− h (x0, a0)| =

¯̄̄̄
¯̄ X
l∈{1,...,L}

∂h

∂xl
(bx,ba) (xl − x0l) +

∂h

∂a
(bx,ba) (a− a0)

¯̄̄̄
¯̄

6
X

l∈{1,...,L}

¯̄̄̄
∂h

∂xl
(bx,ba) (xl − x0l)

¯̄̄̄
+

¯̄̄̄
∂h

∂a
(bx,ba) (a− a0)

¯̄̄̄

=
X

l∈{1,...,L}

¯̄̄̄
∂h

∂xl
(bx,ba)¯̄̄̄ |(xl − x0l)|+

¯̄̄̄
∂h

∂a
(bx,ba)¯̄̄̄ |(a− a0)|

=
X

l∈{1,...,L}

∂h

∂xl
(bx,ba) |(xl − x0l)|+

∂h

∂a
(bx,ba) |(a− a0)|

6
X

l∈{1,...,L}
|(xl − x0l)|+ |(a− a0)|

6 (L+ 1)max

½
max
l∈L

{|(xl − x0l)|} , |(a− a0)|
¾

6 (L+ 1) k(x, a)− (x0, a0)k

Since T <∞, by condition (5), there exists some εi ∈ R++ such that¡
∀a−i ∈ A−i

¢ ¡
∀t, t0 ∈ T i (a−i) :

¡
x∗i,t0 , a

∗
i,t0
¢
6=
¡
x∗i,t, a

∗
i,t

¢¢
:

V i
t0 < V i

t + vit ·
¡
x∗i,t0 − x∗i,t

¢
+ ρit

¡
a∗i,t0 − a∗i,t

¢
− εih

¡¡
x∗i,t0 , a

∗
i,t0
¢
−
¡
x∗i,t, a

∗
i,t

¢¢
13



whereas, ¡
∀a−i ∈ A−i

¢ ¡
∀t, t0 ∈ T i (a−i) :

¡
x∗i,t0 , a

∗
i,t0
¢
=
¡
x∗i,t, a

∗
i,t

¢¢
:

V i
t0 = V i

t

Now, for each t ∈ T , define the function φit : RL ×R −→ R by

φit (x, ai) = V i
t + vit ·

¡
x− x∗i,t

¢
+ ρit

¡
ai − a∗i,t

¢
− εih

¡
(x, ai)−

¡
x∗i,t, a

∗
i,t

¢¢
which is strongly concave. Since it is the sum of two Lipschitzian functions
(every affine function is Lipschitzian), it follows that φit is Lipschitzian with
some constant M i

t .
Moreover, notice that

¡
∀ai ∈ Ai

¢
(∀l ∈ {1, ..., L}) : ∂φ

i
t

∂xl
(·, ai) = vit,l − εi

∂h

∂xl

¡
(x, ai)−

¡
x∗i,t, a

∗
i,t

¢¢
> vit,l − εi

so that, since L <∞ and T <∞, one can choose εi small enough so that¡
∀ai ∈ Ai

¢
: φit (·, ai) is strictly monotone

and, therefore, φit is bounded below on RL+ ×Ai: let Q1 = [0, 1]
L and let

φ
i,t
= min
(x,a)∈Q1×Ai

φit (x, a)

which is well defined, since φit is continuous and Q1 × Ai is compact; then
∀ (x, a) ∈ RL+ × Ai, it is true that φit (x, a) > φit (0, a) > φ

i,t
, by monotonicity

and since x > 0.
Define the function V i : RL+ ×Ai × Ci −→ R by

V i (x, ai, a−i) = min
t∈T i(Ωi(a−i))

©
φit (x, ai)

ª
This function is bounded below and unbounded above (because T < ∞). To
see that it is continuous, fix (x, ai, a−i) ∈ RL+×Ai×Ci and let

¡
xn, ani , a

n
−i
¢∞
n=1

be a sequence on RL+ ×Ai × Ci such that¡
xn, ani , a

n
−i
¢
−→ (x, ai, a−i)

Then
(∃N ∈ N) (∀n > N) :

°°¡xn, ani , an−i¢− (x, ai, a−i)°° < ri
4

Fix one such N . Then,

(∀n > N) :
°°an−i − a−i

°° < ri
4

14



Since, by assumption a−i ∈ Ci, one has, by construction, that¡
∃t ∈ Γi

¢
:
°°a−i − a∗−i,t

°° 6 ri
4

Fix one such t ∈ Γi. By triangle inequality,

(∀n > N) :
°°an−i − a∗−i,t

°° < ri
2

Now, suppose that for some t0 ∈ T , such that a∗−i,t0 6= a∗−i,t, it is true that

(∃n0 > N) :
°°°an0−i − a∗−i,t0

°°° 6 ri
2

Then, by triangle inequality,°°a∗−i,t0 − a∗−i,t
°° < ri < ri

which is a contradiction, since there exists bt ∈ Γi such that a∗−i,bt = a∗−i,t0 and,
by definition, °°°a∗−i,bt − a∗−i,t

°°° > ri

Then, it follows that
(∀n > N) : Ωi

¡
an−i
¢
= a∗−i,t

and, therefore, (∀n > N) :

V i
¡
xn, ani , a

n
−i
¢

= min
t∈T i(a∗−i,t)

©
φit (x

n, ani )
ª

−→ min
t∈T i(a∗−i,t)

©
φit (x, ai)

ª
= V i (x, ai, a−i)

It is also clear that for each a−i ∈ Ci, V i (·, ·, a−i) is strongly concave, since
#T i

¡
Ωi (a−i)

¢
6 T <∞ and each φit is strongly concave.

Since each φit is Lipschitzian with some constant M
i
t , and T <∞, define

M i = max
t∈T

©
M i

t

ª
Fix a−i ∈ Ci, (x, ai) , (x0, a0i) ∈ RL+ × Ai. By definition, there exist t, t0 ∈
T i
¡
Ωi (a−i)

¢
such that

V i (x, ai, a−i) = φit (x, ai) 6 φit0 (x, ai)

V i (x0, a0i, a−i) = φit0 (x
0, a0i) 6 φit (x

0, a0i)

and¯̄
φit (x, ai)− φit (x

0, a0i)
¯̄
6 M i

t k(x, ai)− (x0, a0i)k 6M i k(x, ai)− (x0, a0i)k¯̄
φit0 (x, ai)− φit0 (x

0, a0i)
¯̄
6 M i

t0 k(x, ai)− (x0, a0i)k 6M i k(x, ai)− (x0, a0i)k

15



If φit0 (x
0, a0i) 6 φit (x, ai), then

φit0 (x
0, a0i) 6 φit (x, ai) 6 φit0 (x, ai)

implies that ¯̄
φit (x, ai)− φit0 (x

0, a0i)
¯̄
6M i k(x, ai)− (x0, a0i)k

whereas if φit (x, ai) < φit0 (x
0, a0i), then

φit (x, ai) < φit0 (x
0, a0i) 6 φit (x

0, a0i)

implies that ¯̄
φit (x, ai)− φit0 (x

0, a0i)
¯̄
6M i k(x, ai)− (x0, a0i)k

In any case,¯̄
V i (x, ai, a−i)− V i (x0, a0i, a−i)

¯̄
6M i k(x, ai)− (x0, a0i)k

and V i (·, ·, a−i) is Lipschitzian with constant M i.
Finally, it is clear that for each ai ∈ Ai and each a−i ∈ Ci, V i (·, ai, a−i) is

strictly monotone, since so are all the φit (·, ai) functions.
Define

vi = inf
RL+×Ai×Ci

V i (x, ai, a−i) ∈ R

and the truncated logistic functions ci :
£
vi,∞

¢
−→ [1, 2) by

ci (v) =
2

1 + exp (vi − v)

ci is strongly concave, strictly increasing, differentiable and Lipschitzian with
constant 1. Then, the function W i : RL+ ×Ai × Ci −→ [1, 2), defined by

W i (x, ai, a−i) =
¡
ci ◦ V i

¢
(x, ai, a−i)

which is bounded and continuous, has also the following properties:
First, notice that for each a−i ∈ Ci, W i (·, ·, a−i) is strongly concave. To see

this, fix a−i ∈ Ci, (x, ai) , (x0, a0i) ∈ RL+ × Ai, (x, ai) 6= (x0, a0i) and α ∈ (0, 1).
Then,

V i (α (x, ai) + (1− α) (x0, a0i)) > αV i (x, ai) + (1− α)V i (x0, a0i)

implies

ci
¡
V i (α (x, ai) + (1− α) (x0, a0i))

¢
> ci

¡
αV i (x, ai) + (1− α)V i (x0, a0i)

¢
> αci

¡
V i (x, ai)

¢
+ (1− α) ci

¡
V i (x0, a0i)

¢

16



from where

W i (α (x, ai) + (1− α) (x0, a0i)) > αW i (x, ai) + (1− α)W i (x0, a0i)

Secondly, for each a−i ∈ Ci, W i (·, ·, a−i) is Lipschitzian with constant M i.
This follows since fixing a−i ∈ Ci and (x, ai) , (x0, a0i) ∈ RL+ ×Ai¯̄

ci
¡
V i (x, ai)

¢
− ci

¡
V i (x0, a0i)

¢¯̄
6

¯̄
V i (x, ai)− V i (x0, a0i)

¯̄
6 M i k(x, ai)− (x0, a0i)k

Finally, it is clear that for each a−i ∈ Ci and each ai ∈ Ai, W i (·, ai, a−i) is
strictly monotone.
Define now the function U i : RL+ ×Ai ×A−i −→ R by

U i (x, ai, a−i) =

(
W i (x, ai, a−i) if a−i ∈ Ci

inf ba−i∈Ci W i(x,ai,ba−i)kba−i−a−ik
dis(a−i,Ci) otherwise

It follows from corollary 1 in Carvajal (2002c) that U i is continuous and
satisfies that for each a−i ∈ A−i, U i (·, ·, a−i) is strongly concave and Lip-
schitzian with some constant M i

a−i and that for each a−i ∈ Ci, U i (·, ·, a−i) =
W i (·, ·, a−i). Moreover, for each a−i ∈ A−i and each ai ∈ Ai, U i (·, ·, a−i) is
strictly monotone. To see this, let a−i ∈ A−i, ai ∈ Ai and x, x0 ∈ RL+ such that
x > x0. If a−i ∈ Ci, the result follows by strict monotonicity of W i (·, ai, a−i).
Else, since W i is continuous and Ci is compact, there exists ba−i ∈ Ci such that

U i (x, ai, a−i) =
W i (x, ai,ba−i) kba−i − a−ik

dis (a−i, Ci)

Fix one such ba−i ∈ Ci. Since W i (·, ai,ba−i) is monotone, kba−i − a−ik > 0 and
dis
¡
a−i, C

i
¢
> 0,

U i (x, ai, a−i) =
W i (x, ai,ba−i) kba−i − a−ik

dis (a−i, Ci)

>
W i (x0, ai,ba−i) kba−i − a−ik

dis (a−i, Ci)

> infbba−i∈Ci

W i
³
x0, ai,bba−i´°°°bba−i − a−i

°°°
dis (a−i, Ci)

= U i (x0, ai, a−i)

I now show that

(∀t ∈ T ) :
¡
x∗i,t, a

∗
i,t

¢
∈ Arg max

(x,ai)
U i
¡
x, ai, a

∗
−i,t
¢

s.t.

 pt · x ≤ pt · ωi,t
ai ∈ [0, ai,t]

x > 0
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Fix t ∈ T . Obviously, t ∈ T i
¡
a∗i,t
¢
, and by construction¡

∃t0 ∈ Γi
¢
: a∗−i,t0 = a∗−i,t

from where Ω
¡
a∗−i,t

¢
= a∗−i,t and a∗−i,t ∈ Ci. Then,

U i
¡
·, ·, a∗−i,t

¢
=W i

¡
·, ·, a∗−i,t

¢
and, since ci is strictly monotone, it is true that¡

x∗i,t, a
∗
i,t

¢
∈ Arg max

(x,ai)
U i
¡
x, ai, a

∗
−i,t
¢

s.t.

 pt · x ≤ pt · ωi,t
ai ∈ [0, ai,t]

x > 0

if, and only if, ¡
x∗i,t, a

∗
i,t

¢
∈ Arg max

(x,ai)
V i
¡
x, ai, a

∗
−i,t
¢

s.t.

 pt · x ≤ pt · ωi,t
ai ∈ [0, ai,t]

x > 0

By the definition of data set and condition (4), it follows that
¡
x∗i,t, a

∗
i,t

¢
is

feasible for the problem. Moreover, notice that

V i
¡
x∗i,t, a

∗
i,t, a

∗
−i,t
¢
> V i

t

since, otherwise,
¡
∃t0 ∈ T i

¡
a∗i,t
¢¢
:

φit0
¡
x∗i,t, a

∗
i,t

¢
= V i

t0 + vit0 ·
¡
x∗i,t − x∗i,t0

¢
+ ρit0

¡
a∗i,t − a∗i,t0

¢
−εih

¡¡
x∗i,t, a

∗
i,t

¢
−
¡
x∗i,t0 , a

∗
i,t0
¢¢

< V i
t

contradicting the definition of εi or the properties of V i
t .

Also, by definition
¡
∃t0 ∈ T i

¡
a∗i,t
¢¢
:

V i
¡
x∗i,t, a

∗
i,t, a

∗
−i,t
¢
= φit0

¡
x∗i,t, a

∗
i,t

¢
6 φit

¡
x∗i,t, a

∗
i,t

¢
= V i

t

This establishes that

V i
¡
x∗i,t, a

∗
i,t, a

∗
−i,t
¢
= V i

t
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Now, suppose that (x, ai) ∈ RL ×R\
©¡
x∗i,t, a

∗
i,t

¢ª
satisfies that

pt · x ≤ pt · ωi,t
ai ∈ [0, ai,t]

x > 0

Then, since t ∈ T i
¡
a∗i,t
¢
, it follows that

V i
¡
x, ai, a

∗
−i,t
¢
= min

t0∈T i(a∗i,t)

©
φit0 (x, ai)

ª
6 φit (x, ai)

= V i
t + vit ·

¡
x− x∗i,t

¢
+ ρit

¡
ai − a∗i,t

¢
− εih

¡
(x, ai)−

¡
x∗i,t, a

∗
i,t

¢¢
By condition (1),

V i
¡
x, ai, a

∗
−i,t
¢
6 V i

t +
¡
λ∗i,tpt − ς∗i,t

¢
·
¡
x− x∗i,t

¢
+ρit

¡
ai − a∗i,t

¢
− εih

¡
(x, ai)−

¡
x∗i,t, a

∗
i,t

¢¢
= V i

t + λ∗i,tpt ·
¡
x− x∗i,t

¢
− ς∗i,t ·

¡
x− x∗i,t

¢
+ρit

¡
ai − a∗i,t

¢
− εih

¡
(x, ai)−

¡
x∗i,t, a

∗
i,t

¢¢
Now, since λ∗i,t ∈ R++, by condition (4) and assumption, pt · x ≤ pt · ωi,t,

one has that
λ∗i,tpt ·

¡
x− x∗i,t

¢
= λ∗i,t (pt · x− pt · ωi,t) 6 0

Since ς∗i,t ∈ RL+, by condition (3) and assumption x > 0, it is true that

−ς∗i,t ·
¡
x− x∗i,t

¢
= −ς∗i,t · x 6 0

Suppose that ρit > 0. Then, since µ
∗
i,t > 0, by condition (2), it must be that

η∗i,t > 0, and then, by condition (3), a∗i,t = ai,t. Since ai ∈ [0, ai,t], it follows
that

ρit
¡
ai − a∗i,t

¢
6 0

If, on the other hand, ρit < 0. Then, since η
∗
i,t > 0, by condition (2), it must be

that µ∗i,t > 0, and then, by condition (3), a
∗
i,t = 0. Since ai ∈ [0, ai,t], it follows

that
ρit
¡
ai − a∗i,t

¢
6 0

If ρit = 0, trivially
ρit
¡
ai − a∗i,t

¢
6 0

Finally, since εi ∈ R++ and by assumption (x, ai) 6=
¡
x∗i,t, a

∗
i,t

¢
−εih

¡
(x, ai)−

¡
x∗i,t, a

∗
i,t

¢¢
< 0

from where

V i
¡
x, ai, a

∗
−i,t
¢

< V i
t

= V i
¡
x∗i,t, a

∗
i,t, a

∗
−i,t
¢
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as needed.
Since the former is true for each i ∈ I, and since, by condition (6),X

i∈I
x∗i,t =

X
i∈I

ωi,t

it follows that ³
pt,
¡
x∗i,t, a

∗
i,t

¢
i∈I

´
∈ NW

³³
I,
¡
U i, wi, ai

¢
i∈I

´´
and therefore that³

pt,
¡
a∗i,t
¢
i∈I

´
∈ NWPS

³³
I,
¡
U i, wi, ai

¢
i∈I

´´
The previous characterization can now be used to derive testable restrictions,

in a way similar to what Brown and Matzkin (1996) do with their equilibrium
inequalities, via quantifier elimination. This is done in subsections 3.3 and 3.4.
It must be noticed, though, that these restrictions will be extremely mild, as
they will be equivalent to the conditions of the previous theorem, the crucial one
of which, condition (5), need only hold for pairs of observations for which the
opponents of the player to whom the condition is being applied for evaluation
are all playing the same strategies. In this sense, whatever testable restrictions
are derived will be of “zero measure,” in a manner similar to the ones found in
Carvajal (2002a). This weakness implies that unless players are known to have
degenerate domains of strategies, any researcher applying tests based on this
theory, and with this kind of information, should expect, before observing the
data set, that the hypothesis of Nash-Walras equilibrium will not be rejected.
Given this, the fact that the conditions of theorem 1 are not only necessary
but sufficient becomes of great relevance, because it implies that there are no
stronger restrictions.8

3.3 Testable restrictions:

The characterization of theorem 1 uses existential quantifiers, which perhaps
the researcher can deal with in specific cases of data sets via computational
procedures, but which also appear uncomfortable from a theoretical perspective.
In particular, one would like to know whether there exist restrictions on the
data set only and what form these restrictions have. I now use the theory of
quantifier elimination to show that there exists an equivalent characterization
of rationalizable data sets, in terms of the observed variables only and that the
abstract form of this characterization is relatively simple. Specifically,

8 In terms of the falsificationist position in epistemology, what the theorem says is that
all the testable restrictions of the theory still fail to generate a test that should ex ante be
considered harsh.
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Theorem 2 Given a vector

d =
³¡
wi,t, a

∗
i,t, ai,t

¢
i∈I

´T
t=1
∈
ÃY
i∈I
RL++ ×Ai ×A−i

!T

there exists a semialgebraic set ∆ (d) ⊆
¡
RL++

¢T
such that (pt)

T
t=1 ∈ ∆ (d) if,

and only if, ³
pt,
¡
wi,t, a

∗
i,t, ai,t

¢
i∈I

´T
t=1

is NW-rationalizable.9

Proof. Define the functions sgn : R −→ {−1, 0, 1} by

sgn (x) =

 −1 if x < 0
0 if x = 0
1 if x > 0

and −−→sgn : RL −→ {−1, 0, 1}L by

−−→sgn (x) = (sgn (xl))Ll=1

Define

Ξ =
³¡
RL+ ×R×RL+ ×R×R++ ×RL+ ×R+ ×R

¢I´T
and denote its generic element by

ξ =
³¡
x∗i,t, V

i
t , v

i
t, ρ

i
t, λ
∗
i,t, ς

∗
i,t, µ

∗
i,t, η

∗
i,t

¢
i∈I

´T
t=1

Let b∆ ⊆ ¡RL+¢T × Ξ be the set of all vectors³
(pt)

T
t=1 , ξ

´
that satisfy the following six conditions

1. (∀t ∈ T ) (∀i ∈ I) :

−−→sgn
¡
vit − λ∗i,tpt − ς∗i,t

¢
= (0)

L
l=1

2. (∀t ∈ T ) (∀i ∈ I) :
sgn

¡
ρit − η∗i,t − µ∗i,t

¢
= 0

9 Semialgebraic sets are defined in appendix 7.
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3. (∀t ∈ T ) (∀i ∈ I) :10

sgn

Ã
LX
l=1

ς∗l,i,tx
∗
l,i,t

!
= 0

sgn
¡
µ∗i,ta

∗
i,t

¢
= 0

sgn
¡
η∗i,t

¡
ai,t − a∗i,t

¢¢
= 0

4. (∀t ∈ T ) (∀i ∈ I) :11

sgn

Ã
LX
l=i

pl,tx
∗
l,i,t −

LX
l=i

pl,twl,i,t

!
= 0

5. (∀i ∈ I)
¡
∀t, t0 ∈ T : a∗−i,t = a∗−i,t0

¢
:

sgn

Ã
V i
t0 − V i

t −
LX
l=1

vil,tx
∗
l,i,t0 +

LX
l=1

vil,tx
∗
l,i,t − ρita

∗
i,t0 + ρita

∗
i,t

!
= sit,t0

where

sit,t0 =

½
0 if

¡
x∗i,t, a

∗
i,t

¢
=
¡
x∗i,t0 , a

∗
i,t0
¢

−1 otherwise

6. (∀t ∈ T ) :
−−→sgn

ÃX
i∈I

x∗i,t −
X
i∈I

wi,t

!
= (0)Ll=1

By definition, b∆ is a semialgebraic set. Let ∆ (d) be the projection of b∆ into
the space of prices:

∆ (d) =
n
(pt)

T
t=1 ∈

¡
RL+
¢T ¯̄̄

(∃ξ ∈ Ξ) :
³
(pt)

T
t=1 , ξ

´
∈ b∆o

By corollary 3 in appendix 7, ∆ (d) is semialgebraic. Now, since conditions
(1) to(6) above are equivalent to the conditions of theorem 1, it follows that
(pt)

T
t=1 ∈ ∆ (d) if, and only if,³

pt,
¡
wi,t, a

∗
i,t, ai,t

¢
i∈I

´T
t=1

is NW-rationalizable.
This theorem implies that for given data on endowments, individual actions

and individual constraints to actions,³¡
wi,t, a

∗
i,t, ai,t

¢
i∈I

´T
t=1

10When three subindices are used, they come in the order commodity-individual-
observation: l, i, t.
11For prices, when two subindices are used, they come in the order commodity-observation:

l, t.
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there do exist conditions on observed prices only, (pt)
T
t=1, which are equivalent

to the Nash-Walras rationalizability of the data set. These conditions have a
relatively simple functional form, since they can be expressed as polynomial
inequalities.

3.4 A non-NW-rationalizable data set:

The result of the previous subsection implies that one can characterize NW-
rationalizability by conditions on prices only, given endowments, actions and
constraints to actions. It does not, however, provide any information about
the set of rationalizable prices, beyond the formal fact that it is semialgebraic.
Nothing in that result implies that such set is nonempty, or prevents the possi-
bility that it is the whole space of prices,

¡
RL++

¢T
. That the set is never empty

follows from the existence results of Ghosal and Polemarchakis (1997). I now
show that it need not always be equal to

¡
RL++

¢T
, by the following example:

Example 1 Suppose that I = L = T = 2 and a1 = a2 = 4. The information of
the data set is:

ω1,1 = (2, 4) ω1,2 = (4, 2)
ω2,1 = (1, 1) ω2,2 = (1, 1)
a1,1 = 3 a1,2 = 4
a2,1 = 2 a2,2 = 3

p1 = (1, 10) p2 = (10, 1)
a∗1,1 = 2 a∗1,2 = 2
a∗2,1 = 2 a∗2,2 = 2

Notice that if the data is in NWPS (E) for some economy E , since a∗2,1 =
a∗2,2, at both observations, consumer 1 is maximizing the same utility function
U1
¡
·, ·, a∗2,1

¢
= U1

¡
·, ·, a∗2,2

¢
. Since p1 · ω1,1 = p2 · ω1,2 = 42,

P2
i=1 ωi,1 = (3, 5),

and
P2

i=1 ωi,2 = (5, 3), feasible values of x
∗
1,1 and x

∗
1,2 can only be, respectively,

in

X1 =
©
x = (x1, x2) ∈ R2

¯̄
x > 0, p1 · x = 42, x1 ≤ 3

ª
=

©
(x1, x2) ∈ R2

¯̄
x1 ∈ [0, 3] , x2 = 4.2− 0.1x1

ª
and

X2 =
©
x = (x1, x2) ∈ R2

¯̄
x > 0, p1 · x = 42, x2 ≤ 3

ª
=

©
(x1, x2) ∈ R2

¯̄
x1 ∈ [3.9, 4.2] , x2 = 42− 10x1

ª
Obviously, X1 ∩ X2 = ∅, which implies that any candidates to x∗1,1 and x∗1,2
satisfy x∗1,1 6= x∗1,2. Suppose that x∗1,1 and x∗1,2 rationalize the behavior of
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consumer 1. Since x∗1,1 ∈ X1,12 then

p2 · x∗1,1 = 10x∗1,1,1 + x∗2,1,1
= 10x∗1,1,1 + 4.2− 0.1x∗1,1,1
= 9.9x∗1,1,1 + 4.2

6 9.9 (3) + 4.2

< 42

= p2 · ω1,2

whereas since x∗1,2 ∈ X2, then

p1 · x∗1,2 = x∗1,1,2 + 10x
∗
2,1,2

= x∗1,1,2 + 10
¡
42− 10x∗1,1,2

¢
= 420− 99x∗1,1,2
6 420− 99 (3.9)
< 42

= p1 · ω1,1

Also, since a∗1,2 ∈ [0, a1,1] and a∗1,1 ∈ [0, a1,2], it must be that U1
¡
x∗1,1, a

∗
1,1, a

∗
2,1

¢
=

U1
¡
x∗1,2, a

∗
1,2, a

∗
2,2

¢
. But then, by strongly concavity of U1

¡
·, ·, a∗2,1

¢
for any

λ ∈ (0, 1) one would have that, letting

(xλ, aλ) = λ
¡
x∗1,1, a

∗
1,1

¢
+ (1− λ)

¡
x∗1,2, a

∗
1,2

¢
it is true that (xλ, aλ) ∈

©
x ∈ R2

+

¯̄
p1 · x 6 p1 · ω1,1

ª
× [0, a1,1] and still

U1
¡
xλ, aλ, a

∗
2,1

¢
> U1

¡
x∗1,1, a

∗
1,2, a

∗
2,1

¢
contradicting the fact that x∗1,1 rationalizes the behavior of consumer 1 at ob-
servation 1. (This occurs in spite of the equality a∗1,1 = a∗1,2. The example still
holds if we assume that a∗1,2 = 3.)
The example indicates that there exist vectors

d =
³¡
wi,t, a

∗
i,t, ai,t

¢
i∈I

´T
t=1
∈
ÃY
i∈I
RL++ ×Ai ×A−i

!T

for which the set of rationalizable prices, ∆ (d) in the notation of subsection 3.3,
is a proper subset of

¡
RL++

¢T
. For this example, the theory imposes nontau-

tological testable restrictions. My comments after the proof of theorem 1 can
then be restated as follows: for almost every vector d, ∆ (d) = RL++.
12Recall that for consumption of bundle x, two subindices i, t are taken in the order

consumer-observation, whereas three subindices l, i, t are taken in the order commodity-
consumer-observation.
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3.5 Data sets with no observation of strategies:

My results so far indicate that, even with full observation of individual choices
of actions, the restrictions imposed by the theory are very weak. The appeal
of the results of Brown and Matzkin (1996) is their restrictions did not require
observation of any individual choices, but only of individual budgets and sum-
mary statistics of choices in the form of prices. Suppose now that one does not
observe ³¡

a∗i,t
¢
i∈I

´T
t=1

It seems reasonable to conjecture that all testable restrictions now disappear.
In this case, the relevant set to study is the projection of the Nash-Walras set
into the space of prices, defined as

NWP (E) =(
p ∈ RL++ ×

Y
i∈I

Ai

¯̄̄̄
¯
Ã
∃ (xi, ai)i∈I ∈

Y
i∈I

¡
RL+ ×Ai

¢!
:
¡
p, (xi, ai)i∈I

¢
∈ NW (E)

)
The conjecture in confirmed by the following theorem:

Theorem 3 Let a finite sequence¡
pt, (wi,t, ai,t)i∈I

¢T
t=1

in RL++ ×
Q

i∈I
¡
RL+ ×Ai

¢
be given. If for each t ∈ T , there exist i, i0 ∈ I,

i 6= i0, such that ai,t 6= 0 and ai0,t 6= 0, then for each i ∈ I there exists a
function U i : RL+ ×Ai ×A−i −→ R, continuous and satisfying that¡

∀a−i ∈ A−i
¢
: U i (·, ·, a−i) is Lipschitzian with constant Ma−i¡

∀a−i ∈ A−i
¢
: U i (·, ·, a−i) is strongly concave¡

∀ (ai, a−i) ∈ Ai ×A−i
¢
: U i (·, ai, a−i) is strictly monotone

such that for each t ∈ T

pt ∈ NWP
³n
I,
¡
U i, wi, ai

¢
i∈I

o´
Proof. Fix i ∈ I.
If ∀t ∈ T , ai,t = 0, then define ∀t ∈ T , a∗i,t = 0. Else, define αi =

mint∈T {ai,t| ai,t > 0}, which exists since T <∞, and define ∀t ∈ T ,

a∗i,t =

½
αi
t if ai,t > 0
0 otherwise

Consider the sequence ³
pt,
¡
wi,t, a

∗
i,t, ai,t

¢
i∈I

´T
t=1
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By assumption,

(∀t ∈ T ) : pt ∈ RL++
(∀t ∈ T ) (∀i ∈ I) : wi,t ∈ RL++
(∀t ∈ T ) (∀i ∈ I) : [0, ai,t] ⊆ Ai

and by construction,

(∀t ∈ T ) (∀i ∈ I) : a∗i,t ∈ [0, ai,t]

because if ∀t ∈ T , ai,t = 0, then a∗i,t = 0, whereas if ∃t0 ∈ T such that ai,t0 > 0,
then a∗i,t = 0 if ai,t = 0, and if ai,t > 0, then

0 < a∗i,t =
αi
t
6 αi 6 ai,t

All this implies that ³
pt,
¡
wi,t, a

∗
i,t, ai,t

¢
i∈I

´T
t=1

is a data set.
Define also ∀i ∈ I, ∀t ∈ T , x∗i,t = wi,t, V i

t = 1, vit = pt, ρit = 0, λ∗i,t = 1,

ς∗i,t = (0)
L
l=1, µ

∗
i,t = 0 and η∗i,t = 0.

Conditions (1) to (4) and (6) of theorem 1 are immediate.
Now fix i ∈ I and a−i ∈ A−i. If T i (a−i) = ∅, condition (5) is satisfied.

Now, suppose that T i (a−i) 6= ∅ and let t ∈ T i (a−i). Then a∗−i,t = a−i. For
every t0 ∈ T \ {t}, by assumption of the theorem ∃i0 ∈ I\ {i} such that ai0,t0 6= 0
and hence

a∗i0,t0 =
αi0

t0
> 0

If ai0,t = 0, then a∗i0,t = 0, whereas if ai0,t > 0, then a∗i0,t =
αi0
t and, in any case,

a∗i0,t 6= a∗i0,t0 and therefore t
0 /∈ T i (a−i), from where condition (5) of theorem 1

is also satisfied.
It follows then that ³

pt,
¡
wi,t, a

∗
i,t, ai,t

¢
i∈I

´T
t=1

is NW-rationalizable, which implies the result.
The theorem implies that every sequence that contains no information about

individual choices of the externality (and in this case not even some aggregate
information) is rationalizable as coming from Nash-Walras equilibria of an econ-
omy under the assumptions imposed here, unless the domains for strategies hap-
pen to be very degenerate. This result is easy to obtain in this case, since no
aggregate information is restricting the possible choices of³¡

a∗i,t
¢
i∈I

´T
t=1

and the assumption on the constraints still leaves enough room to construct
these choices with enough variations so that no player ever needs to be assumed
to maximize the same utility function at two different observations.
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4 Consumption externalities:
Consumption externalities arise when consumption of some commodity by one
individual affects the well-being of others. These commodities are traded in
markets, in the same way as any other goods. As they represent clearly defined
physical objects, decisions about this kind of externalities can be compared
across individuals. Moreover, these decisions are market choices: they are made
with consideration to prices and endowments and different demands by an agent
do change the amount of the commodity available to others (although no player
takes this consideration into account when making his decisions). In this sense,
these commodities are not public goods.13 Also, this demands are subject to
aggregation and their markets have to clear for an equilibrium to be attained.
In this section, I consider whether the hypothesis of Nash-Walras equilibrium

is falsifiable under consumption externalities. In contrast to strategic external-
ities, even if only prices and not individual demands are observed, one still has
an aggregate summary of all the decisions of individuals. This is why in this
section, unlike in the previous one, I have carefully distinguished the cases of par-
tial observability (some information on individual choices) and no observability
(none). In the first subsection, I introduce the specific problem under consid-
eration and then in subsection 4.2 I show that, with some limitations, one can
deal with consumption externalities as if they were strategic externalities. Since
these limitations weaken the results obtained by that approach, subsections 4.3
and 4.4 solve the problem as entirely independent of the results of section 3.
Finally, subsection 4.5 solves the problem under the extra assumption of weak
separability of the utility functions.

4.1 The model:

The economy considered here is again populated by a finite set of consumers
I = {1, ..., I}, with 2 6 I < ∞. The decisions that each consumer has to
make now relate only to consumption bundles. I assume that there exist L+ 1
commodities, where L ∈ N, and define the consumption set of each individual
to be RL+×R+. A consumption bundle is now denoted by (x, y), where x ∈ RL+
and y ∈ R+.
Consumption externalities exist because the well-being of each individual

is affected not only by his own consumption, but also by the consumption of
commodity y by all the other consumers. For each player i ∈ I, I will denote by
(xi, yi) ∈ RL+×R+ his own consumption and by y−i ∈ RI−1+ the consumption of
commodity y by the rest of the consumers. Formally, then, I assume that each
individual has preferences that can be represented by

U i : RL+ ×R+ × RI−1+ −→ R

which means that I am assuming that there is one common commodity that
generates the external effects. From now on, this commodity will be referred to
as the externality.
13Although they could enter the utility functions as aggregates.

27



When making decisions, individuals only take into account their own con-
straints, which in this case reduce to the standard budget constraint. That is to
say that if agent i ∈ I is endowed with wi ∈ RL+ of bundle x and with κi ∈ R+
of the externality y, and prices are p ∈ RL++ and q ∈ R++ respectively, then he
chooses his demand (xi, yi) subject only to his budget constraint:

p · xi + qyi 6 p · wi + qκi

An economy is completely described by the set of agents, I, their preferences,¡
U i : RL+ ×R+ ×RI−1+ −→ R

¢
i∈I , and their endowments of bundle x, (wi)i∈I ∈¡

RL++
¢I
and of the externality y, (κi)i∈I ∈ (R++)

I , where I am assuming strictly
positive endowments. Formally, an economy is a vector³

I,
¡
U i, wi, κi

¢
i∈I

´
The hypothesis whose falsifiability I want to study is again whether agents

behave noncooperatively, as in Nash-Walras equilibrium. In this case, the defi-
nition of equilibrium states that agents choose their demands so as to maximize
their own well-being, given their endowments, and taking as given all prices
and the demands of the externality by all other consumers. Equilibrium occurs
when prices are such that under this behavior all markets clear. Formally:

Definition 4 Given an economy

E =
n
I,
¡
U i, wi, κi

¢
i∈I

o
a Nash-Walras equilibrium is a vector¡

p∗, q∗, (x∗i , y
∗
i )i∈I

¢
∈ RL++ ×R++ ×

¡
RL+ ×R+

¢I
such that

(∀i ∈ I) : (x∗i , y∗i ) ∈ Argmax
(x,y)

U i
¡
x, y, y∗−i

¢
s.t.

 p∗ · x+ q∗y 6 p∗ · ωi + q∗κi
x > 0
y > 0

and X
i∈I

(x∗i , y
∗
i ) =

X
i∈I

(ωi, κi)

The set of Nash-Walras equilibria of economy E is denoted NW (E).
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4.2 Embedding consumption as strategic externalities:

Before proceeding any further, it is worth to explore whether, and at what cost,
one can reduce the problem of consumption externalities to just a particular case
of strategic externalities, maintaining the framework under which the results of
section 3 can be applied directly.
The following theorem shows that indeed this can be done, under further

smoothness assumptions and restricting attention to compact subsets of the
domain.

Theorem 4 Suppose that U : RL+ × R+ × RI−1+ −→ R is continuously differ-
entiable and that for each y−i ∈ RI−1+ , U (·, ·, y−i) is strongly concave, strictly
monotone and Lipschitzian with constant My−i . Let D ⊆ RL+ be nonempty, con-
vex and compact, and let a ∈ R+. Denote Ai =

£
0, a
¤
and bX = D×Ai. There ex-

ists a function α : RI−1+ −→ R++ such that the function V : bX×A−i×RI−1+ −→
R, defined by

V ((xi, yi) , ai, y−i) = U (xi, yi, y−i)− α (y−i) (yi − ai)
2

is continuous, satisfies that¡
∀y−i ∈ RI−1+

¢
: V i (·, ·, y−i) is Lipschitzian with cMy−i >My−i¡

∀y−i ∈ RI−1+

¢
: V i (·, ·, y−i) is strongly concave¡

∀ (ai, y−i) ∈ Ai ×RI−1+

¢
: V i (·, ai, y−i) is strictly monotone

and is such that for all y∗−i ∈ RI−1+ , it is true that

(x∗i , y
∗
i ) ∈ Arg max

(xi,yi)
U
¡
xi, yi, y

∗
−i
¢

s.t :

 xi ∈ RL+
yi ∈ R+

p · xi + qyi 6W

if, and only if,

((x∗i , y
∗
i ) , y

∗
i ) ∈ Arg max

(xi,yi,ai)
V
¡
(xi, yi) , ai, y

∗
−i
¢

s.t :

 (xi, yi) ∈ bX
ai ∈ Ai

(p, q) · (xi, yi) 6W

for all W ∈ R++, p ∈ RL++ and q ∈ R++ satisfying that©
(x, y) ∈ RL+ ×R+

¯̄
p · x+ qy 6W

ª
⊆ bX

Proof. If a = 0, then the result is trivial, as any continuous function

α : RI−1+ −→ R++
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will have the desired properties. Hence, I assume that a > 0.
Define the function α : RI−1+ −→ R++ by

α (y−i) =
1

4a
min

(xi,yi)∈ bX
∂U

∂yi
(xi, yi, y−i)

Since D is compact, so is bX and then, by Weierstrass’ theorem, α is well de-
fined because U is continuously differentiable (and hence continuously partially
differentiable), and ∀y−i ∈ RI−1+ , α (y−i) > 0 by monotonicity of U . Moreover,
by the theorem of the maximum, it follows that α is continuous and hence that
V is continuous.
Fix (ai, y−i) ∈ Ai × RI−1+ . Since U is differentiable, so is V ((·, ·) , ai, y−i)

and for each (bxi, byi) ∈ bX,
D(x,y)V ((bxi, byi) , ai, y−i) = · DxU (bxi, byi, y−i)

DyU (bxi, byi, y−i)
¸
− 2α (y−i)

·
0L×1
yi − ai

¸
Since, by construction, for each (bxi, byi) ∈ bX,

DyU (bxi, byi, y−i)− 2α (y−i) (yi − ai) > DyU (bxi, byi, y−i)− 2α (y−i) a
> DyU (bxi, byi, y−i)− 4α (y−i) a
= DyU (bxi, byi, y−i)
− min
(xi,yi)∈ bX

∂U

∂yi
(xi, yi, y−i)

> 0

it follows that D(x,y)V ((bxi, byi) , ai, y−i) ∈ RL+1++ , and hence that¡
∀ (ai, y−i) ∈ Ai ×RI−1+

¢
: V i (·, ai, y−i) is strictly monotone

Now, fix y−i ∈ RI−1+ . Let (xi, yi) , (x0i, y
0
i) ∈ bX and ai, a

0
i ∈ Ai be such that

((xi, yi) , ai) 6= ((x0i, y0i) , a0i) and let θ ∈ (0, 1). Then, denoting

(bxi, byi) = θ (xi, yi) + (1− θ) (x0i, y
0
i)bai = θai + (1− θ) a0i

it follows that

V ((bxi, byi) ,bai, y−i) = U (bxi, byi, y−i)− α (y−i) (byi − bai)2
Suppose first that yi = y0i. Then,

U (bxi, byi, y−i) 6 θU (xi, yi, y−i) + (1− θ)U (x0i, y
0
i, y−i)

and

− (byi − bai)2 = − (yi − θai − (1− θ) a0i)
2

6 −θ (yi − ai)
2 − (1− θ) (yi − a0i)

2

= −θ (yi − ai)
2 − (1− θ) (y0i − a0i)

2
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with at least one of the previous inequalities being strict. Then, since α (y−i) >
0, it follows that

V ((bxi, byi) ,bai, y−i) < θV ((xi, yi) , ai, y−i) + (1− θ)V ((x0i, y
0
i) , a

0
i, y−i)

If, on the other hand, yi 6= y0i, then

U (bxi, byi, y−i) < θU (xi, yi, y−i) + (1− θ)U (x0i, y
0
i, y−i)

whereas
− (byi − bai)2 6 −θ (yi − ai)

2 − (1− θ) (y0i − a0i)
2

and, again, since α (y−i) > 0,

V ((bxi, byi) ,bai, y−i) < θV ((xi, yi) , ai, y−i) + (1− θ)V ((x0i, y
0
i) , a

0
i, y−i)

implying that ¡
∀y−i ∈ RI−1+

¢
: V i (·, ·, y−i) is strongly concave

Now, for any α > 0, consider the mapping hα :
£
0, a
¤2 −→ R defined by

hα (y, a) = −α (y − a)2

Fix (y, a) , (y0, a0) ∈
£
0, a
¤2
. By the mean value theorem, ∃ (by,ba) ∈ £0, a¤2 such

that

hα (y
0, a0) = hα (y, a) +Dhα (by,ba) · · y0 − y

a0 − a

¸
= hα (y, a)− 2α

· by − baba− by
¸
·
·
y0 − y
a0 − a

¸
from where

hα (y
0, a0)− hα (y, a) = −2α (by − ba) ((y0 − y)− (a0 − a))

and hence

|hα (y0, a0)− hα (y, a)| = 2α |by − ba| |(y0 − y)− (a0 − a)|
6 2αa |(y0 − y)− (a0 − a)|
6 2αa (|y0 − y|+ |a0 − a|)

6
√
8αa

q
|y0 − y|2 + |a0 − a|2

=
√
8αa k(y, a)− (y0, a0)k

where the first inequality follows since by,ba ∈ £0, a¤, the second one from triangle
inequality and the last one since ∀k ∈ R+,µ

max
(u,v)∈R2

u+ v s.t.
p
u2 + v2 = k

¶
=
√
2k
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This implies that hα is Lipschitzian with constant
√
8αa.

Again, fix y−i ∈ RI−1+ and let (xi, yi) , (x0i, y
0
i) ∈ bX and ai, a

0
i ∈ Ai. Then,

|V ((xi, yi) , ai, y−i)− V ((x0i, y
0
i) , a

0
i, y−i)|

=
¯̄
U (xi, yi, y−i)− hα(y−i) (yi, ai)− U (x0i, y

0
i, y−i) + hα(y−i) (y

0
i, a

0
i)
¯̄

6 |U (xi, yi, y−i)− U (x0i, y
0
i, y−i)|+

¯̄
hα(y−i) (yi, ai)− hα(y−i) (y

0
i, a

0
i)
¯̄

6 My−i k(xi, yi)− (x0i, y0i)k+
√
8α (y−i) a k(yi, ai)− (y0i, a0i)k

6
³
My−i +

√
8α (y−i) a

´
k(xi, yi, ai)− (x0i, y0i, a0i)k

which means that
¡
∀y−i ∈ RI−1+

¢
: V i (·, ·, y−i) is Lipschitzian with constant

cMy−i =My−i +
√
8α (y−i) a >My−i

Finally, fix y∗−i ∈ RI−1+ , W ∈ R++, p ∈ RL++ and q ∈ R++ such that©
(x, y) ∈ RL+ ×R+

¯̄
p · x+ qy 6W

ª
⊆ bX

Suppose first that

(x∗i , y
∗
i ) ∈ Arg max

(xi,yi)
U
¡
xi, yi, y

∗
−i
¢

s.t :

 xi ∈ RL+
yi ∈ R+

p · xi + qyi 6W

By construction, (x∗i , y
∗
i ) ∈ bX and ∀ (x∗i , y∗i ) ∈ bX such that p ·xi+ qyi 6W and

∀ai ∈ Ai,

V ((xi, yi) , ai, y−i) = U (xi, yi, y−i)− α (y−i) (yi − ai)
2

6 U (xi, yi, y−i)

6 U (x∗i , y
∗
i , y−i)

= V ((x∗i , y
∗
i ) , y

∗
i , y−i)

from where

((x∗i , y
∗
i ) , y

∗
i ) ∈ Arg max

(xi,yi,ai)
V
¡
(xi, yi) , ai, y

∗
−i
¢

s.t :

 (xi, yi) ∈ bX
ai ∈ Ai

(p, q) · (xi, yi) 6W

If, on the other hand,

((x∗i , y
∗
i ) , y

∗
i ) ∈ Arg max

(xi,yi,ai)
V
¡
(xi, yi) , ai, y

∗
−i
¢

s.t :

 (xi, yi) ∈ bX
ai ∈ Ai

(p, q) · (xi, yi) 6W
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Then, x∗i ∈ RL+, y∗i ∈ R+ and ∀ (xi, yi) ∈ RL+ × R+ such that p · xi + qyi 6 W ,
we have that (xi, yi) ∈ bX and

U (xi, yi, y−i) = V ((xi, yi) , yi, y−i)

6 V ((x∗i , y
∗
i ) , y

∗
i , y−i)

= U (x∗i , y
∗
i , y−i)

from where

(x∗i , y
∗
i ) ∈ Arg max

(xi,yi)
U
¡
xi, yi, y

∗
−i
¢

s.t :

 xi ∈ RL+
yi ∈ R+

p · xi + qyi 6W

This result is useful in that it implies that the existence results in Ghosal
and Polemarchakis (1997), which are intended for strategic externalities, also
hold in the case of consumption externalities. The theorem also shows that
by embedding consumption externalities in the framework of section 3, one
would need to restrict attention to the class of continuously differentiable utility
functions with Lipschitzian cross sections, and that the rationalizations would
hold for compact subdomains.
As it turns out, these restrictions are unnecessary and only weaken the re-

sults. Although from a practical perspective this may be an irrelevance, I have
chosen not to pay the cost, and will develop the results of this section indepen-
dently, and not as corollaries of the ones in section 3.

4.3 Partial observability:

I first consider the case in which there exists information about individual de-
mands for the externality. In this case, one is interested in equilibrium values
of prices and individual demands for y, for which it is convenient to define the
projection of the set of Nash-Walras equilibria of an economy E into the space of
prices and demands for the externality. Let NWPE (E) denote this set, whose
formal definition is:

NWPE (E) =
n¡

p, q, (yi)i∈I
¢
∈ RL++ ×R++ × (R+)

I
¯̄̄

³
∃ (xi)i∈I ∈

¡
RL+
¢I´

:
¡
p, q, (xi, yi)i∈I

¢
∈ NW (E)

o
Again, I consider finite data sets of prices of all commodities, individual

endowments of all commodities and individual demands of the externality, as
follows.

Definition 5 A data set with partial observability is a finite sequence³³
pt, qt,

¡
ωi,t, κi,t, y

∗
i,t

¢
i∈I

´´T
t=1
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such that for each t ∈ T = {1, ..., T}

pt ∈ RL++
qt ∈ R++X

i∈I
y∗i,t =

X
i∈I

κi,t

and for each t ∈ T and each i ∈ I

ωi,t ∈ RL++
κi,t ∈ R++
y∗i,t ∈ R+

pt · ωi,t + qt
¡
κi,t − y∗i,t

¢
> 0

That is, for each observation t ∈ T , one observes strictly positive prices for
the externality, qt, and the other commodities, pt, and for each individual one
observes strictly positive endowments of the externality, κi,t, and all other com-
modities, wi,t, and a demand for the externality, y∗i,t. These observed demands
are assumed feasible form both the individual point of view (budget constraints)
and from the market clearing perspective (given the endowments).
As before, I want to test whether a data set is weakly consistent with Nash-

Walras equilibrium, in conditions under which this does not occur trivially.
These conditions are imposed in the following definition

Definition 6 A data set with partial observability³³
pt, qt,

¡
ωi,t, κi,t, y

∗
i,t

¢
i∈I

´´T
t=1

is said to be Nash-Walras-rationalizable if for each i ∈ I there exists U i : RL+ ×
R+ ×RI−1+ −→ R, continuous, satisfying that¡

∀y−i ∈ RI−1+

¢
: U i (·, ·, y−i) is strongly concave¡

∀y−i ∈ RI−1+

¢
: U i (·, ·, y−i) is strictly monotone

such that

(∀t ∈ T ) :
³
pt, qt,

¡
y∗i,t
¢
i∈I

´
∈ NWPE

³n
I,
¡
U i, wi,t, κi,t

¢
i∈I

o´
In this case, it is said that

¡
U i
¢
i∈I NW-rationalizes the data.

The conditions here play the same roles as in section 3, but I no longer
need to impose the Lipschitz condition, because I will derive the results here
independently of the analysis of strategic externalities, using standard results
in revealed preference theory, instead of the approach through subdifferential
calculus.
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4.3.1 Equilibrium Inequalities:

The following characterization of rationalizable data sets is analogous to theo-
rem 1 in section 3: it dispenses with the utility functions in the definition of
rationalizability, substituting them by individual choices satisfying conditions
that make them “equivalent” to the utility functions.
For the theorem, the following notation needs to be introduced. Given a

data set with partial observability³³
pt, qt,

¡
ωi,t, κi,t, y

∗
i,t

¢
i∈I

´´T
t=1

define, for each i ∈ I, the correspondence

T i : RI−1+ ⇒ T

by
T i (y−i) =

©
t ∈ T | y∗−i,t = y−i

ª
Theorem 5 A data set with partial observability³³

pt, qt,
¡
ωi,t, κi,t, y

∗
i,t

¢
i∈I

´´T
t=1

is NW-rationalizable if, and only if, for each i ∈ I and each t ∈ T there exist
x∗i,t ∈ RL+, V i

t ∈ R, vit ∈ RL++, ρit ∈ R++ and λ∗i,t ∈ R++ such that:

1. (∀i ∈ I) (∀t ∈ T ) : vit = λ∗i,tpt

2. (∀i ∈ I) (∀t ∈ T ) : ρit = λ∗i,tqt

3. (∀i ∈ I) (∀t ∈ T ) : pt · x∗i,t = pt · ωi,t + qt
¡
κi,t − y∗i,t

¢
4. (∀i ∈ I)

¡
∀y−i ∈ RI−1+

¢ ¡
∀t, t0 ∈ T i (y−i)

¢
:

V i
t0 6 V i

t + vit ·
¡
x∗i,t0 − x∗i,t

¢
+ ρit

¡
y∗i,t0 − y∗i,t

¢
with strict inequality whenever¡

x∗i,t0 , y
∗
i,t0
¢
6=
¡
x∗i,t, y

∗
i,t

¢
5. (∀t ∈ T ) :

P
i∈I x

∗
i,t =

P
i∈I ωi,t

Proof. Necessity: Let
¡
U i
¢
i∈I NW-rationalize the data set.

Since ∀t ∈ T ,³
pt, qt,

¡
y∗i,t
¢
i∈I

´
∈ NWPE

³¡
U i, ωi,t, κi,t

¢
i∈I

´
by definition, there exists

¡
x∗i,t
¢
i∈I ∈

¡
RL+
¢I
such that³

pt, qt,
¡
x∗i,t, y

∗
i,t

¢
i∈I

´
∈ NW

³³
I,
¡
U i, wi,t, κi,t

¢
i∈I

´´
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Fix one such
¡
x∗i,t
¢
i∈I ∈

¡
RL+
¢I
. By definition,X
i∈I

x∗i,t =
X
i∈I

ωi,t

which is condition (5). Also, since for each i ∈ I, U i
¡
·, ·, y∗−i,t

¢
is monotone, we

must have that

(∀i ∈ I) : pt · x∗i,t + qty
∗
i,t = pt · ωi,t + qtκi,t

from where condition (3) is obvious.
Now, fix i ∈ I. Define Γi ⊆ N as follows:

• γi1 = {1}

• for t ∈ {2, ..., T}

γit =

½
∅ if (∃t0 ∈ {1, ..., t− 1}) : y∗−i,t0 = y∗−i,t

{t} otherwise

• Γi =
S
t∈T γit

Clearly,

(∀t ∈ T )
¡
∃bt ∈ Γi¢ : y∗−i,bt = y∗−i,t¡

∀bt,et ∈ Γi : bt 6= et¢ : y∗−i,bt 6= y∗−i,et
so that

n
T i
³
y∗−i,bt

´o
bt∈Γi is a partition of T : the first condition implies that

T ⊆
[
bt∈Γi

T i
³
y∗−i,bt

´
and since [

bt∈Γi
T i
³
y∗−i,bt

´
⊆ T

it is clear that
T =

[
bt∈Γi

T i
³
y∗−i,bt

´
Whereas from the second condition ∀bt,et ∈ Γi,

bt 6= et =⇒ T i
³
y∗−i,bt

´
∩ T i

³
y∗−i,et

´
= ∅

Now, for each bt ∈ Γi, define
W ibt : RL+ ×R+ −→ R;W ibt (xi, yi) = U i

³
xi, yi, y

∗
−i,bt
´
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Since W ibt is continuous, strongly concave and strictly monotone, and³
∀t ∈ T i

³
y∗−i,bt

´´
:

¡
x∗i,t, y

∗
i,t

¢
∈ Arg max

(x,y)∈RL+×R+
W ibt (xi, yi)

s.t. pt · x+ qty 6 pt · ωi,t + qtκi,t

it then follows from theorem 2 (b=⇒c) in Matzkin and Richter (1991)14 that
∀t ∈ T i

³
y∗−i,bt

´
, there exist V i

t,bt ∈ R, vit,bt ∈ RL++, ρit,bt ∈ R++, λ∗i,t,bt ∈ R++ such
that:
(i)

³
∀t ∈ T i

³
y∗−i,bt

´´
: vi

t,bt = λ∗i,t,btpt
(ii)

³
∀t ∈ T i

³
y∗−i,bt

´´
: ρi

t,bt = λ∗i,t,btqt
(iii)

³
∀t, t0 ∈ T i

³
y∗−i,bt

´´
:

V i
t0,bt 6 V i

t,bt + vi
t,bt · ¡x∗i,t0 − x∗i,t

¢
+ ρi

t,bt ¡y∗i,t0 − y∗i,t
¢

with strict inequality whenever¡
x∗i,t0 , y

∗
i,t0
¢
6=
¡
x∗i,t, y

∗
i,t

¢
However, since

n
T i
³
y∗−i,bt

´o
bt∈Γi is a partition of T , one can define, unam-

biguously, for each t ∈ T ,

V i
t = V i

t,bt
vit = vi

t,bt
ρit = ρi

t,bt
λ∗i,t = λ∗i,t,bt

where bt ∈ Γi is such that t ∈ T i
³
y∗−i,bt

´
.

Conditions (1) and (2) of the theorem follow then immediately from (i) and
(ii). Condition (4) is obvious for

y−i ∈ RI−1+ \
n
y∗−i,bt

o
bt∈Γi

since, in such case T i (y−i) = ∅, and follows from (iii) otherwise.
Sufficiency: Fix i ∈ I, and define Γi as in the proof of necessity. As before,¡

∀bt,et ∈ Γi : bt 6= et¢ : y∗−i,bt 6= y∗−i,et
(∀t ∈ T )

¡
∃bt ∈ Γi¢ : y∗−i,bt = y∗−i,t

14 In order to match their notation, one may define

Bibt =
[

t∈T i
µ
y∗−i,bt

¶ {((pt, qt) , pt · ωi,t + qtκi,t)}³
∀t ∈ T i

³
y∗−i,bt

´´
: hibt (((pt, qt) , pt · ωi,t + qtκi,t)) =

¡
x∗i,t, y

∗
i,t

¢
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Fix bt ∈ Γi. By condition (4), ∀t, t0 ∈ T i
³
y∗−i,bt

´
:

V i
t0 6 V i

t + vit ·
¡
x∗i,t0 − x∗i,t

¢
+ ρit

¡
y∗i,t0 − y∗i,t

¢
with strict inequality whenever¡

x∗i,t0 , y
∗
i,t0
¢
6=
¡
x∗i,t, y

∗
i,t

¢
which implies, given conditions (1), (2) and (3), by theorem 2 (c=⇒b) in Matzkin
and Richter (1991), that there exists W ibt : RL+×R+ −→ R, continuous, strongly
concave and strictly monotone, such that³

∀t ∈ T i
³
y∗−i,bt

´´
:
¡
x∗i,t, y

∗
i,t

¢
∈ Arg max

(x,y)∈RL+×R+
W ibt (x, y)

s.t. pt · x+ qty 6 pt · ωi,t + qtκi,t

By strong monotonicity,¡
∀ (x, y) ∈ RL+ ×R+

¢
:W ibt (x, y) >W ibt (0, 0)

Let
wi = min

©
W ibt (0, 0)ªbt∈Γi ∈ R

Define the truncated logistic function ci :
£
wi,∞

¢
−→ [1, 2) by

ci (w) =
2

1 + exp (wi − w)

which is continuous, strictly increasing and strongly concave
Define

Ci =
n
y∗−i,bt

o
bt∈Γi ⊆ RI−1+

and W i : RL+ ×R+ × Ci −→ [1, 2) by

W i (xi, yi, y−i) = ci
¡
W ibt (xi.yi)¢

where bt ∈ Γi is such that y∗−i,bt = y−i. By construction, W i is bounded. Also,

∀y−i ∈ Ci, it is clear that W i (·, ·, y−i) is strictly monotone, since so are all W ibt ,
for bt ∈ Γi, and ci. Moreover, ∀y−i ∈ Ci, W i (·, ·, y−i) is strongly concave: let
(x, y) , (x0, y0) ∈ RL+ × R+, (x, y) 6= (x0, y0) and θ ∈ (0, 1); then, for bt ∈ Γi such
that y∗−i,bt = y−i

W ibt (θx+ (1− θ)x0, θy + (1− θ) y0) > θW ibt (x, y) + (1− θ)W ibt (x0, y0)
by strong concavity of W ibt . This implies that
ci
¡
W ibt (θx+ (1− θ)x0, θy + (1− θ) y0)

¢
> ci

¡
θW ibt (x, y) + (1− θ)W ibt (x0, y0)¢

> θci
¡
W ibt (x, y)¢+ (1− θ) ci

¡
W ibt (x0, y0)¢
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by strict monotonicity and concavity of ci.
Furthermore, W i is continuous, as Ci contains no limit points. To see this,

let (xi, yi, y−i) ∈ RL+ × R+ × Ci and consider any sequence
¡¡
xni , y

n
i , y

n
−i
¢¢∞

n=1

such that ∀n ∈ N,
¡
xni , y

n
i , y

n
−i
¢
∈ RL+×R+×Ci and

¡
xni , y

n
i , y

n
−i
¢
−→ (xi, yi, y−i).

Then, since #Ci = #Γi 6 T <∞, ∃N ∈ N such that

(∀n > N) : yn−i = y−i

and hence
(∀n > N) :W i

¡
xni , y

n
i , y

n
−i
¢
= ci

¡
W ibt (xni , yni )¢

where bt ∈ Γi is such that y∗−i,bt = y−i. But, by continuity of ci and W ibt it follows
that

ci
¡
W ibt (xni , yni )¢ −→ ci

¡
W ibt (xi, yi)¢

= W i (xi, yi, y−i)

Now, since Ci is compact, it follows from corollary 1 in Carvajal (2002c)
that there exists U i : RL+ ×R+ × RI−1+ −→ R such that:
(i) U i is continuous.
(ii)

¡
∀y−i ∈ RI−1+

¢
: U i (·, ·, y−i) is strongly concave.

(iii)
¡
∀y−i ∈ RI−1+

¢
: U i (·, ·, y−i) is strictly monotone.

(iv)
¡
∀ (xi, yi, y−i) ∈ RL+ × R+ × Ci

¢
: U i (xi, yi, y−i) =W i (xi, yi, y−i).

By construction, and since ci is strictly monotone, it is true that ∀t ∈ T ,¡
x∗i,t, y

∗
i,t

¢
∈ Arg max

(x,y)∈RL+×R+
ci
¡
W ibt (x, y)¢

s.t. pt · x+ qty 6 pt · ωi,t + qtκi,t

where bt ∈ Γi is such that y∗
i,bt = y∗−i,t, which exists and is unique becausen

T i
³
y∗−i,bt

´o
bt∈Γi is a partition of T . From here, it follows that ∀t ∈ T ,

¡
x∗i,t, y

∗
i,t

¢
∈ Arg max

(x,y)∈RL+×R+
W i

¡
x, y, y∗−i,t

¢
s.t. pt · x+ qty 6 pt · ωi,t + qtκi,t

and, hence, by (iv), ∀t ∈ T ,¡
x∗i,t, y

∗
i,t

¢
∈ Arg max

(x,y)∈RL+×R+
U i
¡
x, y, y∗−i,t

¢
s.t. pt · x+ qty 6 pt · ωi,t + qtκi,t

By condition (5) of the theorem, the latter implies that for each t ∈ T ,¡
pt, qt,

¡
x∗i,t, y

∗
i,t

¢¢
∈ NW

¡¡
U i, ωi,t, κi,t

¢¢
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and hence that ¡
pt, qt,

¡
y∗i,t
¢¢
∈ NWE

¡¡
U i, ωi,t, κi,t

¢¢
It then follows from (i), (ii) and (iii) that

³³
pt, qt,

¡
ωi,t, κi,t, y

∗
i,t

¢
i∈I

´´T
t=1

is

NW-rationalizable.
Again, the conditions of theorem 5 are intuitive. Given a rationalizable

data set, if one also observed individual demands for commodities other than
the externality, x∗i,t, for each i ∈ I and each t ∈ T , then condition 5 would
come by definition of equilibrium (market clearing), and condition 3 from strict
monotonicity of the utility functions (Walras’ law), whereas conditions 1, 2 and
4, which are Afriat inequalities, are equivalent to the Strong Axiom of Revealed
Preference (see Matzkin and Richter (1991)), conditional on y∗−i,t.
Similarly to what was done in section 3, I will use this characterization to

derive testable restrictions. Before doing so, though, it must again be noticed
that whatever restrictions are found to be imposed by the theory, they will
be very mild in the same sense as in the case of strategic externalities: they
are restrictive only for pairs of observations for which all the opponents of a
consumer maintain their demand for the externality unchanged.

4.3.2 Testable restrictions:

As in subsection 3.3, the theory of quantifier elimination can be applied here to
show that there exist restrictions, on observed data only, that are equivalent to
Nash-Walras rationalizability with partial observability. The result is:

Theorem 6 Given a vector

d =
³¡
wi,t, κi,t, y

∗
i,t

¢
i∈I

´T
t=1
∈
³¡
RL++ ×R++ ×R+

¢I´T
there exists a semialgebraic set ∆ (d) ⊆

¡
RL++ ×R++

¢T
such that (pt, qt)

T
t=1 ∈

∆ (d) if, and only if, ³³
pt, qt,

¡
ωi,t, κi,t, y

∗
i,t

¢
i∈I

´´T
t=1

is NW-rationalizable.

Proof. The argument is similar to the proof of theorem 2, and is therefore
omitted.

4.3.3 A non-NW-rationalizable data set with partial observability:

I now show that the restrictions derived above need not always be vacuous, in
the sense that there exist vectors

d =
³¡
wi,t, κi,t, y

∗
i,t

¢
i∈I

´T
t=1
∈
³¡
RL++ ×R++ ×R+

¢I´T
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for which the set∆ (d) defined in theorem 6 is a proper subset of
¡
RL++ ×R++

¢T
.15

Example 2 Suppose that I = L = T = 2. The information of the data set with
partial observation is:

ω1,1 = (1, 4) ω1,2 = (4, 1)
ω2,1 = (2, 1) ω2,2 = (1, 2)
κ1,1 = 1 κ1,2 = 0.5
κ2,1 = 1 κ2,2 = 1.5

p1 = (1, 10) p2 = (10, 1)
q1 = 1 q2 = 2
y∗1,1 = 0 y∗1,2 = 0
y∗2,1 = 2 y∗2,2 = 2

Suppose that the data set lies in NWPE (E), for some economy E with all
the properties of definition 6. Since y∗2,1 = y∗2,2, consumer 1 maximizes the same
utility function U1

¡
·, ·, y∗2,1

¢
= U1

¡
·, ·, y∗2,2

¢
at both observations. Since

p1 · ω1,1 + q1
¡
κ1,1 − y∗1,1

¢
= 42

p2 · ω1,2 + q2
¡
κ1,2 − y∗1,2

¢
= 42P2

i=1 ωi,1 = (3, 5) and
P2

i=1 ωi,2 = (5, 3), feasible values of x∗1,1 and x∗1,2 can
only be, respectively, in

X1 =
©
x = (x1, x2) ∈ R2

¯̄
x > 0, p1 · x = 42, x1 ≤ 3

ª
=

©
(x1, x2) ∈ R2

¯̄
x1 ∈ [0, 3] , x2 = 4.2− 0.1x1

ª
and

X2 =
©
x = (x1, x2) ∈ R2

¯̄
x > 0, p1 · x = 42, x2 ≤ 3

ª
=

©
(x1, x2) ∈ R2

¯̄
x1 ∈ [3.9, 4.2] , x2 = 42− 10x1

ª
As before, X1 ∩ X2 = ∅ implies that any candidates to x∗1,1 and x∗1,2 satisfy
x∗1,1 6= x∗1,2. Suppose that x

∗
1,1 and x∗1,2 rationalize the behavior of consumer 1.

Since x∗1,1 ∈ X1,16 then

p2 · x∗1,1 + q2y
∗
1,1 = 10x∗1,1,1 + x∗2,1,1 + 2y

∗
1,1

= 10x∗1,1,1 + 4.2− 0.1x∗1,1,1
= 9.9x∗1,1,1 + 4.2

6 9.9 (3) + 4.2

< 42

= p2 · ω1,2 + q2κ1,2

15The results of Ghosal and Polemarchakis (1997) and theorem 4 above imply that this set
is nonempty.
16Once again, for consumption of bundle x, two subindices i, t are taken in the order con-

sumer, observation, whereas three subindices l, i, t are taken in the order commodity, consumer,
observation.
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whereas since x∗1,2 ∈ X2, then

p1 · x∗1,2 + q1y
∗
1,2 = x∗1,1,2 + 10x

∗
2,1,2 + y∗1,2

= x∗1,1,2 + 10
¡
42− 10x∗1,1,2

¢
+ 0.5

= 420− 99x∗1,1,2
6 420− 99 (3.9)
< 42

= p1 · ω1,1 + q1κ1,1

This implies that U1
¡
x∗1,1, y

∗
1,1, y

∗
2,1

¢
= U1

¡
x∗1,2, y

∗
1,2, y

∗
2,2

¢
. But then, by strong

concavity of U1
¡
·, ·, y∗2,1

¢
for any λ ∈ (0, 1) one would have that, letting

(xλ, yλ) = λ
¡
x∗1,1, y

∗
1,1

¢
+ (1− λ)

¡
x∗1,2, y

∗
1,2

¢
it is true that (xλ, yλ) ∈

©
(x, y) ∈ R2+ ×R+

¯̄
p1 · x+ q1y 6 p1 · ω1,1 + q1κ1,1

ª
and still U1

¡
xλ, yλ, y

∗
2,1

¢
> U1

¡
x∗1,1, y

∗
1,1, y

∗
2,1

¢
, contradicting the fact that x∗1,1

rationalizes the behavior of consumer 1 at observation 1. (This occurs in spite
of the equality y∗1,1 = y∗1,2. The example holds with minor changes if we assume
that κ1,2 = 1 and y∗1,2 = 0.5.)

4.4 No observability:

In the last section I showed that, although ex ante very mild, Nash-Walras
equilibrium hypothesis imposes testable restrictions whenever prices, individual
endowments and individual consumptions of the externality are observed. This
approach assumes that some individual choices are being observed and does not,
therefore, follow the spirit of Brown and Matzkin (1996). When no individual
choice is observed, one must only deal with prices and endowments.

Definition 7 A data set with no observability is a finite sequence¡¡
pt, qt, (ωi,t, κi,t)i∈I

¢¢T
t=1

such that for each t ∈ T = {1, ..., T}

pt ∈ RL++
qt ∈ R++

and for each t ∈ T and each i ∈ I

ωi,t ∈ RL++
κi,t ∈ R++

The definition of consistency with Nash-Walras equilibrium of a data set
must now require that there exist utility functions (with the same conditions
that were required under partial observability) such that for each observation
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t ∈ T , the observed prices lie in the projection into the space of prices of
the Nash-Walras set of the economy configured by those preferences and the
observed corresponding endowments.
Definition 6 provides with a shortcut for the definition of Nash-Walras ra-

tionalizability in this case,

Definition 8 A data set with no observability¡¡
pt, qt, (ωi,t, κi,t)i∈I

¢¢T
t=1

is said to be Nash-Walras-rationalizable if for each i ∈ I and each t ∈ T there
exists y∗i,t ∈ R+ such that the sequence³³

pt, qt,
¡
ωi,t, κi,t, y

∗
i,t

¢
i∈I

´´T
t=1

is a data set with partial observability and is NW-rationalizable.

In this case, in contrast to strategic externalities, even if one does not ob-
serve individual decisions on the externality, there is a summary statistic about
this decision, in the form of prices (qt)

T
t=1. The interesting result is that, the

observation of those prices notwithstanding, the theory again fails to impose
any testable restrictions.

Theorem 7 Every data set with no observability¡¡
pt, qt, (ωi,t, κi,t)i∈I

¢¢T
t=1

is NW-rationalizable.

Proof. Introduce the following algorithm

Algorithm 1 17Input:
¡¡
pt, qt, (ωi,t, κi,t)i∈I

¢¢T
t=1

1. Let t = 1.

2. If
(∀t0 ∈ {1, ..., t− 1}) (∀i ∈ I) : y∗i,t0 6= κi,t

define

(∀i ∈ I) : x∗i,t = ωi,t

(∀i ∈ I) : y∗i,t = κi,t

and go to step 6.

17Recall that for consumption of bundle x, three subindices l, i, t are taken in the or-
der commodity-individual-observation. For prices, two subindices l, t are taken in the order
commodity-observation.
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3. Let J =
©
i ∈ I| (∃t0 ∈ {1, ..., t− 1}) : y∗i,t0 6= κi,t

ª
. If J = ∅, let ε = 1 and

go to step 5.

4. Define

ε = min
i∈J

(
min

t0∈{1,...,t−1}:y∗
i,t0 6=κi,t

¯̄
y∗i,t0 − κi,t

¯̄)

5. Define

γ = min
i∈I\{1}

½
(I − 1) p1,tω1,i,t

qt

¾
δ = min

nε
2
, κ1,t, γ

o
y∗1,t = κ1,t − δ

(∀i ∈ I\ {1}) : y∗i,t = κi,t +
δ

I − 1

x∗l,1,t =

(
ωl,1,t +

qtδ
p1,t

if l = 1

ωl,1,t otherwise

(∀i ∈ I\ {1}) : x∗l,i,t =
(

ωl,i,t − qtδ
p1,t(I−1) if l = 1

ωl,i,t otherwise

6. If t = T stop. Else, t = t+ 1 and go to step 2.

Output:
³¡
x∗i,t, y

∗
i,t

¢
i∈I

´T
t=1

This algorithm runs in finite time, since T <∞. I now show that its output
has the following properties:
(i) (∀t ∈ T ) (∀i ∈ I) : pt · x∗i,t + qty

∗
i,t = pt · ωi,t + qtκi,t

(ii) (∀t ∈ T ) (∀i ∈ I) : x∗i,t ∈ RL+ and y∗i,t ∈ R+
(iii) (∀t ∈ T ) : X

i∈I

¡
x∗i,t, y

∗
i,t

¢
=
X
i∈I

(ωi,t, κi,t)

(iv) (∀i ∈ I) (∀t, t0 ∈ T : t 6= t0) : y∗i,t 6= y∗i,t0 .
Let e1 = (1, 0, ..., 0) ∈ RL+. Notice that, since T <∞, if at some pass through

the algorithm, δ is defined, it satisfies δ > 0.
Property (i) is straightforward if

¡
x∗i,t, y

∗
i,t

¢
i∈I = (ωi,t, κi,t)i∈I , in which case

it has been defined by step 2. Else,
¡
x∗i,t, y

∗
i,t

¢
i∈I must have been defined by

step 5, and

pt · x∗1,t + qty
∗
1,t = pt ·

µ
ω1,t +

qtδ

p1,t
e1

¶
+ qt (κ1,t − δ)

= pt · ω1,t + qtκ1,t
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whereas for each i ∈ I\ {1},

pt · x∗1,t + qty
∗
1,t = pt ·

µ
ω1,t −

qtδ

p1,t (I − 1)
e1

¶
+ qt

µ
κ1,t +

δ

I − 1

¶
= pt · ω1,t + qtκ1,t

Property (ii) follows by definition if
¡
x∗i,t, y

∗
i,t

¢
i∈I = (ωi,t, κi,t)i∈I . Else, since

δ > 0,

x∗1,t = ω1,t +
qtδ

p1,t
e1

> ω1,t

À 0

whereas for each i ∈ I\ {1},

x∗1,i,t = ω1,i,t −
qtδ

p1,t (I − 1)
> ω1,i,t −

qtγ

p1,t (I − 1)

> ω1,i,t −
qt

p1,t (I − 1)

µ
(I − 1) p1,tω1,i,t

qt

¶
= 0

and for each l ∈ {2, ..., L}, x∗l,i,t = ωl,i,t > 0.
Also,

y∗1,t = κ1,t − δ

> κ1,t − κ1,t

= 0

and for each i ∈ I\ {1},

y∗i,t = κi,t +
δ

I − 1
> κi,t

> 0

Property (iii) is straightforward if
¡
x∗i,t, y

∗
i,t

¢
i∈I = (ωi,t, κi,t)i∈I . Else,X

i∈I

¡
x∗i,t, y

∗
i,t

¢
=

¡
x∗1,t, y

∗
1,t

¢
+

X
i∈I\{1}

¡
x∗i,t, y

∗
i,t

¢
=

µ
ω1,t +

qtδ

p1,t
e1, κ1,t − δ

¶
+

X
i∈I\{1}

µ
ωi,t −

qtδ

p1,t (I − 1)
e1, κi,t +

δ

I − 1

¶
=

X
i∈I

(ω1,t, κ1,t)
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Finally, in order to show property (iv), since T <∞, it suffices to show that
if at the tth pass through the algorithm

(∀t0, t00 ∈ {1, ..., t− 1} : t0 6= t00) (∀i ∈ I) : y∗i,t0 6= y∗i,t00

then
(∀t0, t00 ∈ {1, ..., t} : t0 6= t00) (∀i ∈ I) : y∗i,t0 6= y∗i,t00

To establish this, it suffices to show that

(∀t0 ∈ {1, ..., t− 1}) (∀i ∈ I) : y∗i,t0 6= y∗i,t

This is tautological if t = 1, and follows from step 2 if
¡
x∗i,t, y

∗
i,t

¢
i∈I =

(ωi,t, κi,t)i∈I . Hence, I now consider t > 2 and assume that
¡
x∗i,t, y

∗
i,t

¢
i∈I is

given by steps 3, 4 and 5. I consider three different cases:
Case 1: t = 2 and J = ∅. Then, for each i ∈ I, κi,2 = y∗i,1. Since δ > 0, it

is straightforward that for each i ∈ I, y∗i,2 6= κi,2 = y∗i,1.
Case 2: t = 2 and J 6= ∅. Then, if 1 /∈ J , one has that y∗1,1 = κ1,2, and,

since δ > 0, it follows that

y∗1,2 = κ1,2 − δ

= y∗1,1 − δ

6= y∗1,1

Else, if 1 ∈ J , one has that if y∗1,1 = y∗1,2, then, since y
∗
1,2 = κ1,2 − δ, it would

follow that ¯̄
y∗1,1 − κ1,2

¯̄
= δ

6 ε

2
< ε

6
¯̄
y∗1,1 − κ1,2

¯̄
an obvious contradiction.
On the other hand, for each i ∈ I\ (J ∪ {1}), it is true that y∗i,1 = κi,2.

Since δ > 0, it follows that

y∗i,2 = κi,2 +
δ

I − 1

= y∗i,1 +
δ

I − 1
6= y∗i,1
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whereas for each i ∈ J \{1}, if one had that y∗i,1 = y∗i,2, then, since y∗i,2 =

κi,2 +
δ

I−1 and δ > 0, it would be true that

¯̄
y∗i,1 − κi,2

¯̄
=

δ

I − 1
6 δ

6 ε

2
< ε

6
¯̄
y∗i,1 − κi,2

¯̄
again, a contradiction.
Case 3: t > 3. In this case, by the induction assumption and definition,

J = I, from where, if

(∃t0 ∈ {1, ..., t− 1}) : y∗1,t0 = y∗1,t

then y∗1,t = κ1,t − δ and δ > 0 would imply that y∗1,t0 6= κ1,t and¯̄
y∗1,t0 − κ1,t

¯̄
= δ

6 ε

2
< ε

6 min
t00∈{1,...,t−1}:y∗

1,t00 6=κ1,t

©¯̄
y∗1,t00 − κ1,t

¯̄ª
an obvious contradiction. Finally, if for some i ∈ I\ {1}, one had that

(∃t0 ∈ {1, ..., t− 1}) : y∗i,t0 = y∗i,t

then, y∗i,t = κi,t +
δ

I−1 and δ > 0 would imply that y∗i,t0 6= κi,t and

¯̄
y∗i,t0 − κi,t

¯̄
=

δ

I − 1
6 δ

6 ε

2
< ε

6 min
t00∈{1,...,t−1}:y∗

i,t00 6=κi,t

©¯̄
y∗i,t00 − κi,t

¯̄ª
again, a contradiction.
Now, taking

¡
(y∗i,t)i∈I

¢T
t=1

from the output of the algorithm, since, by prop-
erty (iii),

(∀t ∈ T ) :
X
i∈I

y∗i,t =
X
i∈I

κi,t

47



and by properties (i) and (ii)

(∀i ∈ I) (∀t ∈ T ) : y∗i,t ∈ R+
(∀i ∈ I) (∀t ∈ T ) : pt · ωi,t + qt

¡
κi,t − y∗i,t

¢
> 0

it follows by definition that³³
pt, qt,

¡
ωi,t, κi,t, y

∗
i,t

¢
i∈I

´´T
t=1

is a data set with partial observability.

Moreover, taking
³¡
x∗i,t
¢
i∈I

´T
t=1

from the output, it follows from property

(ii) that
(∀t ∈ T ) (∀i ∈ I) : x∗i,t ∈ RL+

whereas, defining

(∀i ∈ I) (∀t ∈ T ) : V i
t = 1

(∀i ∈ I) (∀t ∈ T ) : vit = pt

(∀i ∈ I) (∀t ∈ T ) : ρit = qt

(∀i ∈ I) (∀t ∈ T ) : λ∗i,t = 1

it is obvious that

(∀i ∈ I) (∀t ∈ T ) : V i
t ∈ R, vit ∈ RL++, ρit ∈ R and λ∗i,t ∈ R++

and that
(a) (∀i ∈ I) (∀t ∈ T ) : vit = λ∗i,tpt
(b) (∀i ∈ I) (∀t ∈ T ) : ρit = λ∗i,tqt
From property (i) of the output,
(c) (∀i ∈ I) (∀t ∈ T ) : pt · x∗i,t = pt · ωi,t + qt

¡
κi,t − y∗i,t

¢
And from property (iv) of the output, since, by construction,

(∀i ∈ I)
¡
∀y−i ∈ RI−1+

¢
: #T i (y−i) 6 1

it is clear that
(d) (∀i ∈ I)

¡
∀y−i ∈ RI−1+

¢ ¡
∀t, t0 ∈ T i (y−i)

¢
:

V i
t0 6 V i

t + vit ·
¡
x∗i,t0 − x∗i,t

¢
+ ρit

¡
y∗i,t0 − y∗i,t

¢
with strict inequality whenever¡

x∗i,t0 , y
∗
i,t0
¢
6=
¡
x∗i,t, y

∗
i,t

¢
Finally, from property (iii) of the output,
(e) (∀t ∈ T ) :

P
i∈I x

∗
i,t =

P
i∈I ωi,t
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Then, by theorem 5, (a) to (e) imply that³
pt, qt,

¡
ωi,t, κi,t, y

∗
i,t

¢
i∈I

´T
t=1

is NW-rationalizable, and, therefore, that¡
pt, qt, (ωi,t, κi,t)i∈I

¢T
t=1

is NW-rationalizable.
Hence, even under observation of prices of the externality, strictly positive

endowments give enough room to construct individual demands for the exter-
nality such that no individual has to be assumed to maximize the same utility
function at two different observations, which destroys all possibilities of testable
restrictions, as these are derived from revealed preference theory.

4.5 Weak separability:

The results of the previous two subsections, in particular the ones of 4.4, imply
that, in general, externalities are able to destroy all the restrictions existing
on the equilibrium manifold of exchange economies, specifically those found by
Brown and Matzkin (1996). In many cases, this result may appear extreme
in the sense that the researcher may be of the opinion that the externalities,
although a reality, are not of great relevance, either because the aggregate en-
dowment of the externality is relatively "small" or because the effects that the
externality has, both in the individual who is consuming it and on others are
somewhat "insignificant".
I now show that this view is correct in the sense that if one assumes that

the consumption of the externality, both by the individual and by the rest
of consumers, has no effect on the ordinal relations between the rest of the
commodities, there do exist testable restrictions, with and without observation
of the profiles of consumption of the externality. In other words, I now show that
if one has reasons to impose, besides the hypothesis of Nash Equilibrium, the
one that all consumers have preferences that are separable in the consumption of
the private commodities, then there do exist testable restrictions. Specifically:

Definition 9 A function U : RL+×R+×RI−1+ −→ R, (x, yi, y−i) 7−→ U (x, yi, y−i)

is said to be weakly separable (in x) if there exist u : R × R+ × RI−1+ −→ R,
which is continuous and monotonically increasing in its first argument, and
V : RL+ −→ R, which is continuous, such that¡

∀ (x, yi, y−i) ∈ RL+ ×R+ ×RI−1+

¢
: U (x, yi, y−i) = u (V (x) , yi, y−i) .

As before, for simplicity it turns out to be convenient to consider first the
case in which the profiles of consumption of the externality are assumed to be
observed.
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4.5.1 Partial observability:

In analogy to definition 6, under the separability assumption the hypothesis of
Nash-Walras behavior is:

Definition 10 A data set with partial observability³³
pt, qt,

¡
ωi,t, κi,t, y

∗
i,t

¢
i∈I

´´T
t=1

is said to be Nash-Walras-rationalizable with weak separability if for each i ∈ I
there exists U i : RL+ × R+ × RI−1+ −→ R, continuous and weakly separable,
satisfying that¡

∀y−i ∈ RI−1+

¢
: U i (·, ·, y−i) is concave¡

∀y−i ∈ RI−1+

¢
: U i (·, ·, y−i) is strictly monotone

such that

(∀t ∈ T ) :
³
pt, qt,

¡
y∗i,t
¢
i∈I

´
∈ NWPE

³³
I,
¡
U i, wi,t, κi,t

¢
i∈I

´´
In this case, for technical reasons, the characterization via equilibrium in-

equalities, analogous to theorem 5, is given by the following two results, which
are partial converse of one another. Both theorems are based on Varian (1983).

Theorem 8 Suppose that a data set with partial observability³³
pt, qt,

¡
ωi,t, κi,t, y

∗
i,t

¢
i∈I

´´T
t=1

is Nash-Walras-rationalized with weak separability by
¡
U i
¢
i∈I and for each i ∈ I

there exist ui : R × R+ × RI−1+ −→ R, which is continuous and monotonically
increasing in its first argument, and V i : RL+ −→ R, which is continuous, such
that:
(i)
¡
∀ (x, yi, y−i) ∈ RL+ ×R+ ×RI−1+

¢
: U i (x, yi, y−i) = ui

¡
V i (x) , yi, y−i

¢
;

(ii)
¡
∀y−i ∈ RI−1+

¢
: U i (·, ·, y−i) is differentiable;

(iii)
¡
∀y−i ∈ RI−1+

¢
: ui (·, ·, y−i) is differentiable and concave;

(iv) V i is differentiable and concave;
(v)

¡
∀ (x, yi) ∈ RL++ ×R++

¢ ¡
∀y−i ∈ RI−1+

¢
:©

(x0, y0i) ∈ RL+ ×R+
¯̄
U i (x0, y0i, y−i) = U i (x, yi, y−i)

ª
⊆ RL++ ×R++

then for each i ∈ I and each t ∈ T there exist x∗i,t ∈ RL++, V i
t ∈ R, U i

t ∈ R,
vit ∈ RL++, ρit ∈ R++, λ∗i,t ∈ R++ and µ∗i,t ∈ R++ such that:

1. (∀i ∈ I) (∀t ∈ T ) : vit = λ∗i,tpt

2. (∀i ∈ I) (∀t ∈ T ) : ρit = µ∗i,tqt
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3. (∀i ∈ I) (∀t ∈ T ) : pt · x∗i,t = pt · ωi,t + qt
¡
κi,t − y∗i,t

¢
4. (∀i ∈ I)

¡
∀y−i ∈ RI−1+

¢ ³
∀t, t0 ∈ T i (y−i)

´
:

U i
t0 6 U i

t + ρit

³
y∗
i,t0 − y∗i,t

´
+

µ∗i,t
λ∗i,t

¡
V i
t0 − V i

t

¢
5. (∀i ∈ I)

³
∀t, t0 ∈ T

´
:

V i
t0 6 V i

t + vit ·
³
x∗
i,t0 − x∗i,t

´
6. (∀t ∈ T ) :

P
i∈I x

∗
i,t =

P
i∈I ωi,t

Proof. Since ∀t ∈ T ,³
pt, qt,

¡
y∗i,t
¢
i∈I

´
∈ NWPE

³³
I,
¡
U i, wi,t, κi,t

¢
i∈I

´´
then, by definition, there exists

¡
x∗i,t
¢
i∈I ∈

¡
RL+
¢I
such that³

pt, qt,
¡
x∗i,t, y

∗
i,t

¢
i∈I

´
∈ NW

³³
I,
¡
U i, wi,t, κi,t

¢
i∈I

´´
Fix one such

¡
x∗i,t
¢
i∈I ∈

¡
RL+
¢I
. By definition,X
i∈I

x∗i,t =
X
i∈I

ωi,t

which is condition (6). Also, since for each i ∈ I, U i
¡
·, ·, y∗−i,t

¢
is monotone, we

must have that

(∀i ∈ I) : pt · x∗i,t + qty
∗
i,t = pt · ωi,t + qtκi,t

from where condition (3) is obvious.
Fix i ∈ I. Since ∀t ∈ T ,¡

x∗i,t, y
∗
i,t

¢
∈ Arg max

(x,yi)∈RL+×R+
U i
¡
x, yi, y

∗
−i,t
¢

s.t. pt · x+ qtyi 6 pt · ωi,t + qtκi,t

we have by (v), since pt · ωi,t + qtκi,t > 0, that18¡
x∗i,t, y

∗
i,t

¢
∈ RL++ ×R++

18One can obtain the same implication with a weaker assumption:µ
∀ {(xn, yi,n)}∞n=1

seq
⊆ RL++ × R++

¶ ³
∀ (x, yi) ∈

³
RL+ × R+

´
\
³
RL++ × R++

´´ ³
∀y−i ∈ RI−1+

´
lim

n−→∞
(xn, yi,n) = (x, yi) =⇒ lim

n−→∞
Dx,yiU

i (xn, yi,n, y−i)

kDx,yiU
i (xn, yi,n, y−i)k

=
³
(0)Ll=1 , 0

´
where Dx,yiU

i represents the gradient of U i with respect to x and yi and k·k is the Euclidean
norm in RL+1.
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and also, from (i), that ∀t ∈ T ,

x∗i,t ∈ Arg max
x∈RL+

V i (x)

s.t. pt · x 6 pt · ωi,t + qt
¡
κi,t − y∗i,t

¢
Fix t ∈ T . From (ii) and (iv) and the Kuhn-Tucker theorem19 it follows that

∃vit ∈ RL++, ρit ∈ R++, λ∗i,t ∈ R++ and µ∗i,t ∈ R++ such that:

• vit = λ∗i,tpt

• ρit = µ∗i,tqt

•
¡
∀ (x, yi) ∈ RL+ ×R+

¢
:

U i
¡
x, yi, y

∗
−i,t
¢
6 U i

¡
x∗i,t, y

∗
i,t, y

∗
−i,t
¢
+ ρit

¡
yi − y∗i,t

¢
+ µ∗i,tpt ·

¡
x− x∗i,t

¢

•
¡
∀x ∈ RL+

¢
:

V i (x) 6 V i
¡
x∗i,t
¢
+ vit ·

¡
x− x∗i,t

¢
Conditions (1) and (2) are hence satisfied.
Now, by (iii) and the chain rule,

µ∗i,tpt =
∂ui

∂V

¡
V
¡
x∗i,t
¢
, y∗i,t, y

∗
−i,t
¢
vit

=
∂ui

∂V

¡
V
¡
x∗i,t
¢
, y∗i,t, y

∗
−i,t
¢
λ∗i,tpt

from where
∂ui

∂V

¡
V
¡
x∗i,t
¢
, y∗i,t, y

∗
−i,t
¢
=

µ∗i,t
λ∗i,t

and hence, by (iii) again (concavity of ui
¡
·, ·, y∗−i,t

¢
),¡

∀ (V, yi) ∈ RL ×R+
¢

:

ui
¡
V, yi, y

∗
−i,t
¢
6 ui

¡
V
¡
x∗i,t
¢
, y∗i,t, y

∗
−i,t
¢
+ ρit

¡
yi − y∗i,t

¢
+
µ∗i,t
λ∗i,t

¡
V − V

¡
x∗i,t
¢¢

Define ∀t0 ∈ T ,

U i
t0 = ui

¡
V
¡
x∗i,t0

¢
, y∗i,t0 , y

∗
−i,t0

¢
V i
t0 = V

¡
x∗i,t0

¢
19The following step one could give, without assuming differentiability and just imposing

Lipschitz continuity, via theorem 4 in appendix 6. However, a further step below will require
the use a chain rule and I am unaware of one that applies for subdifferential calculus in the
direction needed here.
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and let t0 ∈ T be such that y∗−i,t0 = y∗−i,t. By construction,

U i
t0 = ui

¡
V
¡
x∗i,t0

¢
, y∗i,t0 , y

∗
−i,t0

¢
= ui

¡
V
¡
x∗i,t0

¢
, y∗i,t0 , y

∗
−i,t
¢

6 ui
¡
V
¡
x∗i,t
¢
, y∗i,t, y

∗
−i,t
¢
+ ρit

¡
yi,t0 − y∗i,t

¢
+

µ∗i,t
λ∗i,t

¡
V
¡
x∗i,t0

¢
− V

¡
x∗i,t
¢¢

= U i
t + ρit

¡
y∗i,t0 − y∗i,t

¢
+

µ∗i,t
λ∗i,t

¡
V i
t0 − V i

t

¢
which is condition (4).
Also, letting t0 ∈ T , it follows that

V i
t0 = V

¡
x∗i,t0

¢
6 V i

¡
x∗i,t
¢
+ vit ·

¡
x∗i,t0 − x∗i,t

¢
6 V i

t + vit ·
¡
x∗i,t0 − x∗i,t

¢
which is condition (5).
The partial converse is:

Theorem 9 Given a data set with partial observability³³
pt, qt,

¡
ωi,t, κi,t, y

∗
i,t

¢
i∈I

´´T
t=1

if for each i ∈ I and each t ∈ T there exist x∗i,t ∈ RL+, V i
t ∈ R, U i

t ∈ R,
vit ∈ RL++, ρit ∈ R++, λ∗i,t ∈ R++ and µ∗i,t ∈ R++ such that:

1. (∀i ∈ I) (∀t ∈ T ) : vit = λ∗i,tpt

2. (∀i ∈ I) (∀t ∈ T ) : ρit = µ∗i,tqt

3. (∀i ∈ I) (∀t ∈ T ) : pt · x∗i,t = pt · ωi,t + qt
¡
κi,t − y∗i,t

¢
4. (∀i ∈ I)

¡
∀y−i ∈ RI−1+

¢ ³
∀t, t0 ∈ T i (y−i)

´
:

U i
t0 6 U i

t + ρit

³
y∗
i,t0 − y∗i,t

´
+

µ∗i,t
λ∗i,t

¡
V i
t0 − V i

t

¢
5. (∀i ∈ I)

³
∀t, t0 ∈ T

´
:

V i
t0 6 V i

t + vit ·
³
x∗
i,t0 − x∗i,t

´
6. (∀t ∈ T ) :

P
i∈I x

∗
i,t =

P
i∈I ωi,t
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then ³³
pt, qt,

¡
ωi,t, κi,t, y

∗
i,t

¢
i∈I

´´T
t=1

is Nash-Walras-rationalizable with weak separability.

Proof. Fix i ∈ I and define Ci =
©
y∗−i,t

ª
t∈T . Clearly, C

i ⊆ RI−1+ is compact.
Define the function wi : R+ ×R+ × Ci −→ R by:³
∀
³
V, yi, y

∗
−i,t0

´
∈ R+ ×R+ × Ci

´
:

wi
³
V, yi, y

∗
−i,t0

´
= min

t∈T :y∗−i,t=y
∗
−i,t0

½
U i
t + ρit

¡
yi − y∗i,t

¢
+

µ∗i,t
λ∗i,t

¡
V − V i

t

¢¾

This function satisfies that ∀y∗−i,t0 ∈ Ci, wi
¡
·, ·, y∗−i,t0

¢
is continuous, strictly

monotone and concave. Moreover, wi is continuous, as Ci contains no limit
points (see the proof of theorem 5). Also, by monotonicity, ∀

¡
V, yi, y

∗
−i,t0

¢
∈

R+ ×R+ × Ci,

wi
³
V, yi, y

∗
−i,t0

´
> wi = min

y
∗
−i,t0∈C

i

n
wi
³
0, 0, y

∗
−i,t0

´o
∈ R

Define the truncated logistic function ci :
£
wi,∞

¢
−→ [1, 2) by

¡
∀w ∈

£
wi,∞

¢¢
: ci (w) =

2

1 + exp (wi − w)

which is continuous, strictly increasing and strongly concave. Let W i = ci ◦
wi : R+ × R+ × Ci −→ [1, 2). By construction, W i is bounded, continuous
and ∀y∗−i,t0 ∈ Ci, W i

¡
·, ·, y∗−i,t0

¢
is strictly monotone and concave. Since Ci

is compact, it follows from corollary 1 in Carvajal (2002c) that there exists
ui : R+ ×R+ ×RI−1+ −→ R such that:

• ui is continuous;

•
¡
∀y−i ∈ RI−1+

¢
: ui (·, ·, y−i) is concave;

•
¡
∀y−i ∈ RI−1+

¢
: ui (·, ·, y−i) is strictly monotone;

•
¡
∀
¡
V, yi, y

∗
−i,t0

¢
∈ R+ ×R+ × Ci

¢
: ui

¡
V, yi, y

∗
−i,t0

¢
=W i

¡
V, yi, y

∗
−i,t0

¢
.

Without loss of generality, assume that ∀i ∈ I and ∀t ∈ T ,

V i
t > vitx

∗
i,t

Define also V i : RL+ −→ R+ by¡
∀x ∈ RL+

¢
: V i (x) = min

t∈T

©
V i
t + vit ·

¡
x− x∗i,t

¢ª

54



Clearly, V i is continuous, concave and strictly monotone. Now, define the func-
tion U i : RL+ ×R+ ×RI−1+ −→ R by:¡

∀ (x, yi, y−i) ∈ RL+ ×R+ ×RI−1+

¢
: U i (x, yi, y−i) = ui

¡
V i (x) , yi, y−i

¢
which is continuous, weakly separable and satisfies that¡

∀y−i ∈ RI−1+

¢
: U i (·, ·, y−i) is concave¡

∀y−i ∈ RI−1+

¢
: U i (·, ·, y−i) is strictly monotone

Now, let t ∈ T . By condition (5),

V i
¡
x∗i,t
¢
= V i

t

and then, by condition (4),

wi
³
V i
¡
x∗i,t
¢
, y∗i,t, y

∗
−i,t

´
= U i

t

from where

U i
³
V i
¡
x∗i,t
¢
, y∗i,t, y

∗
−i,t

´
= W i

³
V i
¡
x∗i,t
¢
, y∗i,t, y

∗
−i,t

´
= ci

¡
U i
t

¢
Now, suppose that (x, yi) ∈ RL+ ×R+ is such that

pt · x+ qtyi 6 pt · ωi,t + qtκi,t

= pt · x∗i,t + qty
∗
i,t
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where the equality follows from condition (3). Then, using conditions (1) and
(2), one has that

U i
³
x, yi, y

∗
−i,t

´
= ui

³
V i (x) , yi, y

∗
−i,t

´
= W i

³
V i (x) , yi, y

∗
−i,t

´
= ci

³
wi
³
V i (x) , yi, y

∗
−i,t

´´
= ci

µ
wi

µ
min
t0∈T

©
V i
t0 + vit0 ·

¡
x− x∗i,t0

¢ª
, yi, y

∗
−i,t

¶¶
= ci

Ã
min

t00∈T :y∗−i,t00=y
∗
−i,t

n
U i
t00 + ρit00

¡
yi − y∗i,t00

¢
+

µ∗i,t00

λ∗i,t00

µ
min
t0∈T

©
V i
t0 + vit0 ·

¡
x− x∗i,t0

¢ª
− V i

t00

¶¾¶
6 ci

Ã
min

t00∈T :y∗−i,t00=y
∗
−i,t

n
U i
t00 + ρit00

¡
yi − y∗i,t00

¢
+

µ∗i,t00

λ∗i,t00

¡
V i
t + vit ·

¡
x− x∗i,t

¢
− V i

t00
¢¾¶

6 ci
µ
U i
t + ρit

¡
yi − y∗i,t

¢
+

µ∗i,t
λ∗i,t

vit ·
¡
x− x∗i,t

¢¶
= ci

µ
U i
t + µ∗i,tqt

¡
yi − y∗i,t

¢
+

µ∗i,t
λ∗i,t

λ∗i,tpt ·
¡
x− x∗i,t

¢¶
= ci

¡
U i
t + µ∗i,t

¡
(qtyi + pt · x)−

¡
qty
∗
i,t + ptx

∗
i,t

¢¢¢
6 ci

¡
U i
t

¢
= U i

³
V i
¡
x∗i,t
¢
, y∗i,t, y

∗
−i,t

´
where the inequality in the sixth line follows because ci is strictly monotone,
t ∈ T and

¡
∀t00 ∈ T : y∗−i,t00 = y∗−i,t

¢
: µ∗i,t00 , λ

∗
i,t00 ∈ R++; the inequality in the

seventh line follows because ci is strictly monotone, t ∈ T and y∗−i,t = y∗−i,t, and
the last inequality follows since, by construction,

pt · x+ qtyi 6 pt · x∗i,t + qty
∗
i,t

Since, by definition, ∀t ∈ T ,
X
i∈I

y∗i,t =
X
i∈I

κi,t and, by condition 6,
X
i∈I

x∗i,t =X
i∈I

ωi,t, it follows that
¡
U i
¢
i∈I NW-rationalizes the data set with weak separa-

bility.
Notice that the conditions that arise in both theorems are identical. Two

features of these conditions deserve to be highlighted. The first one is that
these is no longer a set of polynomial inequalities, given that condition (4) in-
volves a ratio between variables. The implication of this fact is that one can
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no longer argue that the set of values of the variables that satisfy the condi-
tions, or its projections, are semialgebraic. Put in other words, one cannot use
Tarski-Seidenberg quantifier elimination (appendix 7) to get rid of the quantified
variables.
The other feature that is important is that although condition (4) is still a

conditional inequality (i.e. it has to be satisfied for pairs of observations where
the rest of players keep their actions constant), this is not the case for condition
(5). The characterization involves a set of Afriat inequalities that must hold for
every pair of observations: these are not “zero-measure” restrictions.

4.5.2 No observability:

In this case, the hypothesis that I want to study is given by:

Definition 11 A data set with no observability¡¡
pt, qt, (ωi,t, κi,t)i∈I

¢¢T
t=1

is said to be NW-rationalizable with weak separability if for each i ∈ I and each
t ∈ T there exists y∗i,t ∈ R+ such that the sequence³³

pt, qt,
¡
ωi,t, κi,t, y

∗
i,t

¢
i∈I

´´T
t=1

is a data set with partial observability and is NW-rationalizable with weak sep-
arability.

I will argue below that a result analogous to theorem 7 does not hold. Al-
ternatively, the following characterization can be derived:

Corollary 1 Suppose that a data set with no observability¡¡
pt, qt, (ωi,t, κi,t)i∈I

¢¢T
t=1

is Nash-Walras-rationalized with weak separability by
¡
U i
¢
i∈I and for each i ∈ I

there exist ui : R × R+ × RI−1+ −→ R, which is continuous and monotonically
increasing in its first argument, and V i : RL+ −→ R, which is continuous, such
that:
(i)
¡
∀ (x, yi, y−i) ∈ RL+ ×R+ ×RI−1+

¢
: U i (x, yi, y−i) = ui

¡
V i (x) , yi, y−i

¢
;

(ii)
¡
∀y−i ∈ RI−1+

¢
: U i (·, ·, y−i) is differentiable;

(iii)
¡
∀y−i ∈ RI−1+

¢
: ui (·, ·, y−i) is differentiable and concave;

(iv) V i is differentiable and concave;
(v)

¡
∀ (x, yi) ∈ RL++ ×R++

¢ ¡
∀y−i ∈ RI−1+

¢
:©

(x0, y0i) ∈ RL+ ×R+
¯̄
U i (x0, y0i, y−i) = U i (x, yi, y−i)

ª
⊆ RL++ ×R++

then for each i ∈ I and each t ∈ T there exist x∗i,t ∈ RL++, y∗i,t ∈ R++,
V i
t ∈ R, U i

t ∈ R, vit ∈ RL++, ρit ∈ R++, λ∗i,t ∈ R++ and µ∗i,t ∈ R++ such that:
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1. (∀i ∈ I) (∀t ∈ T ) : vit = λ∗i,tpt

2. (∀i ∈ I) (∀t ∈ T ) : ρit = µ∗i,tqt

3. (∀i ∈ I) (∀t ∈ T ) : pt · x∗i,t + qty
∗
i,t = pt · ωi,t + qtκi,t

4. (∀i ∈ I)
¡
∀y−i ∈ RI−1+

¢ ³
∀t, t0 ∈ T i (y−i)

´
:

U i
t0 6 U i

t + ρit

³
y∗
i,t0 − y∗i,t

´
+

µ∗i,t
λ∗i,t

¡
V i
t0 − V i

t

¢
5. (∀i ∈ I)

³
∀t, t0 ∈ T

´
:

V i
t0 6 V i

t + vit ·
³
x∗
i,t0 − x∗i,t

´
6. (∀t ∈ T ) :

P
i∈I x

∗
i,t =

P
i∈I ωi,t

7. (∀t ∈ T ) :
P

i∈I y
∗
i,t =

P
i∈I κi,t

Proof. This follows straightforwardly from theorem 8.
Its partial converse is:

Corollary 2 Given a data set with partial observability³³
pt, qt,

¡
ωi,t, κi,t, y

∗
i,t

¢
i∈I

´´T
t=1

if for each i ∈ I and each t ∈ T there exist x∗i,t ∈ RL+, y∗i,t ∈ R+, V i
t ∈ R,

U i
t ∈ R, vit ∈ RL++, ρit ∈ R++, λ∗i,t ∈ R++ and µ∗i,t ∈ R++ such that:

1. (∀i ∈ I) (∀t ∈ T ) : vit = λ∗i,tpt

2. (∀i ∈ I) (∀t ∈ T ) : ρit = µ∗i,tqt

3. (∀i ∈ I) (∀t ∈ T ) : pt · x∗i,t + qty
∗
i,t = pt · ωi,t + qtκi,t

4. (∀i ∈ I)
¡
∀y−i ∈ RI−1+

¢ ³
∀t, t0 ∈ T i (y−i)

´
:

U i
t0 6 U i

t + ρit

³
y∗
i,t0 − y∗i,t

´
+

µ∗i,t
λ∗i,t

¡
V i
t0 − V i

t

¢
5. (∀i ∈ I)

³
∀t, t0 ∈ T

´
:

V i
t0 6 V i

t + vit ·
³
x∗
i,t0 − x∗i,t

´
6. (∀t ∈ T ) :

P
i∈I x

∗
i,t =

P
i∈I ωi,t
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7. (∀t ∈ T ) :
P

i∈I y
∗
i,t =

P
i∈I κi,t

then ³³
pt, qt,

¡
ωi,t, κi,t, y

∗
i,t

¢
i∈I

´´T
t=1

is Nash-Walras-rationalizable with weak separability.

Proof. This follows straightforwardly from theorem 9.

4.5.3 Nonrationalizable data sets:

Although the results obtained under separability are not as strong as without
such assumption, in the sense that the necessary conditions are weaker than
the sufficient conditions and that no argument about quantifier elimination has
been attempted, I now show, via an example, that the intuition that under this
assumption, if aggregate endowments of the externality are small enough, one
can refute the hypothesis of Nash-Walras behavior is correct. That is, I now
show that under weak separability there are data sets with no observability that
cannot be NW-rationalized with weak separability. This, of course, implies that
there exist nonrationalizable data sets with partial observability.

Example 3 Suppose that I = L = T = 2. The information of the data set with
partial observation is:

ω1,1 = (1, 4) ω1,2 = (4, 1)
ω2,1 = (2, 1) ω2,2 = (1, 2)
κ1,1 = 0.01 κ1,2 = 0.005
κ2,1 = 0.01 κ2,2 = 0.005
p1 = (1, 10) p2 = (10, 1)
q1 = 0.1 q2 = 0.2

Suppose that the data set is NW-rationalized with weak separability by¡
U1, U2

¢
. Let, for each i ∈ {1, 2} and each t ∈ {1, 2},¡

x∗i,t, y
∗
i,t

¢
∈ Arg max

(x,yi)∈RL+×R+
U i
¡
x, yi, y

∗
−i,t
¢

s.t. pt · x+ qtyi 6 pt · ωi,t + qtκi,t

Let U1 be representable as U1 (x, y1, y2) = u1
¡
V 1 (x) , y1, y2

¢
, where u1 is

monotonically increasing in its first argument (and, therefore, V 1 is strictly
monotone). Then, it must be that for each t ∈ {1, 2}

x∗1,t ∈ Arg max
x∈RL+

V 1 (x)

s.t. pt · x 6 Tx
1,t = pt · ω1,t + qt

¡
κ1,t − y∗1,t

¢
Since, by aggregate feasibility,

(∀t ∈ {1, 2}) : Tx
1,t ∈ [pt · ω1,t − qtκ2,t, pt · ω1,t + qtκ1,t]
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it follows that
(∀t ∈ {1, 2}) : Tx

1,t ∈ [40.999, 41.001]

Also, since
P2

i=1 ωi,1 = (3, 5) and
P2

i=1 ωi,2 = (5, 3), feasible values of x
∗
1,1 and

x∗1,2 can only be, respectively, in

X1 =
©
x = (x1, x2) ∈ R2

¯̄
x > 0, p1 · x = Tx

1,1, x1 ≤ 3
ª

=

½
(x1, x2) ∈ R2

¯̄
x1 ∈ [0, 3] , x2 =

Tx
1,1

10
− 0.1x1

¾
and

X2 =
©
x = (x1, x2) ∈ R2

¯̄
x > 0, p1 · x = Tx

1,2, x2 ≤ 3
ª

=

½
(x1, x2) ∈ R2

¯̄
x2 ∈ [0, 3] , x1 =

Tx
1,2

10
− 0.1x2

¾
⊂

©
(x1, x2) ∈ R2

¯̄
x1 ∈ [3.7999, 4.2] , x2 = Tx

1,2 − 10x1
ª

As before, X1 ∩ X2 = ∅ implies that any candidates to x∗1,1 and x∗1,2 satisfy
x∗1,1 6= x∗1,2. Since x

∗
1,1 ∈ X1,20 then

p2 · x∗1,1 = 10x∗1,1,1 + x∗2,1,1

= 10x∗1,1,1 +
Tx
1,1

10
− 0.1x∗1,1,1

6 9.9x∗1,1,1 + 4.1001

6 9.9 (3) + 4.1001

< 40.999

6 Tx
1,2

= p2 · x∗1,2

whereas since x∗1,2 ∈ X2, then

p1 · x∗1,2 = x∗1,1,2 + 10x
∗
2,1,2

= x∗1,1,2 + 10
¡
Tx
1,2 − 10x∗1,1,2

¢
6 410.01− 99x∗1,1,2
6 410.01− 99 (3.7999)
< 40.999

6 Tx
1,1

= p1 · x∗1,1
20Once again, for consumption of bundle x, two subindices i, t are taken in the order con-

sumer, observation, whereas three subindices l, i, t are taken in the order commodity, consumer,
observation.
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which is a violation of SARP and, hence contradicts the fact that for each
t ∈ {1, 2}

x∗1,t ∈ Arg max
x∈RL+

V 1 (x)

s.t. pt · x 6 Tx
1,t

(See theorem 2 in Matzkin and Richter, 1991.)

5 Concluding remarks:
This paper considered the question of whether or not the hypothesis of Nash-
Walras equilibrium in economies with externalities can be refuted based on finite
data sets that do not contain all the information on individual decisions. The
answer to this question is for the most part negative. Whether the external
effects come form abstract actions or from consumption of commodities, if the
data set contains information on prices, all individual constraints and individual
choices of the externality, there do exist some extremely mild testable restric-
tions. These restrictions, however, exhaust all the empirical implications of the
theory, since they are not only necessary but also sufficient for the data to be
consistent with the equilibrium concept. If a researcher is going to apply tests
based on these restrictions, before observing the data, he or she should expect
to be unable to refute the hypothesis. If one randomly simulates a data set,
and the domains that are defined are not degenerate, the chances of finding a
data set which is inconsistent with the hypothesis of Nash-Walras equilibrium
are null. This result is similar with the findings of Carvajal (2002a) for the case
of games under continuous domains.
Moreover, if there is no information about individual choices, so that only

the prices and the individual constraints are observed, then the hypothesis is
unfalsifiable: for any feasible data set, there exists a profile of preferences such
that the data set arises as Nash-Walras equilibria of the economy with such
preferences and endowments. Furthermore, these preferences can be taken to
be such that Walras’ law is satisfied and individual actions, for given feasible
sets and actions of the opponents, are uniquely defined. The result is particu-
larly strong in the case of consumption externalities, in which the price of the
externality appears as an observed summary statistic of the individual decisions.
These negative results stand in contrast with the ones obtained by Brown

and Matzkin (1996) for standard exchange economies (and by Snyder (1999)
for Pareto-efficient provision of public goods). The conceptual reason why the
results obtain is that under strategic interaction the preferences of each individ-
ual with respect to what he can decide depend on the actions of his opponents.
Hence, when opponents change their actions, the objective function that the in-
dividual maximizes changes and, unless further assumptions are being imposed,
revealed preference theory completely loses its grip.
These are, therefore, general results for which the effects in each individual’s

utility function of actions of his opponents are allowed a great deal of arbitrari-
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ness. If assumptions that restrict these effects are plausible, the restrictions
that the theory imposes may strengthen.21 For this to be the case, however,
it is apparent that the assumptions have to either specify how actions by each
individual’s opponents change the preorder given by him to his own actions
(sub- or super-modularity being examples of this case), or imply that, at least
over some sets of actions of the opponents that have positive measure, such a
preorder does not change.
For example, in the case of consumption externalities, if one can assume that

the externality is relatively insignificant in the sense that it does not affect the
ordinality of consumption of all other commodities for all individuals, then the
hypothesis of Nash-Walras behavior is refutable, even without observation of
individual demands for the externality.

6 Appendix: Subdifferential Calculus
The goal of this appendix is to argue that a conclusion similar to the one arising
from Kühn-Tucker’s necessity theorem can be obtained if the objective function
of an optimization problem is smooth enough, even if it is not differentiable.
Let Σ ⊆ RM , with M ∈ N and Φ ⊆ R. Given a function π : Σ −→ Φ;σ 7−→

π (σ), define for σ∗ ∈ Σ

Lπ (σ∗) = {σ ∈ Σ|π (σ) 6 π (σ∗)}
SLπ (σ∗) = {σ ∈ Σ|π (σ) < π (σ∗)}
∂π (σ∗) =

©
ν ∈ RM

¯̄
(∀σ ∈ Σ) : ν · (σ − σ∗) 6 π (σ)− π (σ∗)

ª
∂6π (σ∗) =

©
ν ∈ RM

¯̄
(∀σ ∈ Lπ (σ∗)) : ν · (σ − σ∗) 6 π (σ)− π (σ∗)

ª
∂<π (σ∗) =

©
ν ∈ RM

¯̄
(∀σ ∈ SLπ (σ∗)) : ν · (σ − σ∗) 6 π (σ)− π (σ∗)

ª
Lπ (σ∗) is the lower contour set of π at (σ∗), SLπ (σ∗) is its strict lower con-
tour set, ∂π (σ∗) its subdifferential, ∂6π (σ∗) its infradifferential (Gutierrez) and
∂<π (σ∗) its lower subdifferential (Plastria)22. The following lemmas are going
to be used.

Lemma 1 (Penot) If there is no local minimizer of π on π−1 (π (σ∗)), but σ∗,
in particular if

π (σ∗) > inf
Σ
π (σ)

and if any local minimizer of π is a global minimizer, then

∂<π (σ∗) = ∂6π (σ∗)

21Of course, under observability of individual decisions for the externality, the restrictions
derived here will continue to be imposed, as they will still be necessary conditions. Under
further assumptions, however, the sufficiency claims made in the theorems here may no longer
be true, in which case the exhaustion of the restrictions of the theory would require stronger
conditions.
22 See Penot (1998).
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Proof. This is Proposition 9 in Penot (1998), pages 20-21.

Lemma 2 (Gutierrez) Let π be a convex function. Suppose that π does not
attain a minimum at σ∗. Then

∂6π (σ∗) =
[
τ>1

τ∂π (σ∗)

Proof. This is Theorem 2 in Gutierrez (1984), page 529.

Lemma 3 (Penot) Let f : Z −→ R, and for each k ∈ K let gk : bZ −→ R,
where #K <∞ . Suppose that z∗ is a solution to the problem

min f (z)

s.t. (∀k ∈ K) : gk (z) 6 0
and that f and gk, for each k ∈ K, are continuous, quasiconvex, gk (z∗) = 0
for each k ∈ K, f (resp. gk) is Lipschitzian on SLf (z∗) (resp on g−1k (R−)).
Suppose that there exists z ∈ Z with gk (z) < 0 for each k ∈ K. Then, there
exists α ∈ ∂<f (z∗) and for each k ∈ K there exist βk ∈ ∂<gk (z

∗) and γk ∈ R+
such that

α+
X
k∈K

γkβk = 0

Proof. This is Corollary 3 in Penot (1998), page 36.

Lemma 4 Let a ∈ R+. Suppose that V : RL+ ×
£
0, a
¤
−→ R is continuous,

concave (resp. strongly concave) and Lipschitzian, and for each a ∈
£
0, a
¤
,

V (·, a) is strictly monotone. Given p ∈ RL++, m ∈ R++ and a ∈
£
0, a
¤
, if

(x∗, a∗) is a solution to the problem

maxV (x, a)

s.t.

 x > 0
a ∈ [0, a]
p · x ≤ m

then p · x∗ = m, and there exist v ∈ RL+\ {0}, ρ ∈ R, λ∗ ∈ R++, ς∗ ∈ RL+,
µ∗ ∈ R+ and η∗ ∈ R+ such that:

1. v = λ∗p− ς∗

2. ρ = η∗ − µ∗

3. ς∗ · x∗ = 0, µ∗a∗ = 0 and η∗ (a− a∗) = 0

4.
¡
∀ (x, a) ∈ RL+ ×

£
0, a
¤¢
:

V (x, a) 6 V (x∗, a∗) + v · (x− x∗) + ρ (a− a∗)

(resp. with strict inequality whenever (x0, a0) 6= (x, a).)
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Proof. That p · x∗ = m follows by strict monotonicity.
Define f : RL+ ×

£
0, a
¤
−→ R by

f (x, a) = −V (x, a)

f is continuous, convex, Lipschitzian, and¡
∀a ∈

£
0, a
¤¢ ¡
∀x ∈ RL+

¢
: x0 > x =⇒ f (x0, a) < f (x, a)

(I will refer to this last property as strict monotonicity.)
Let J = {1, ..., L+ 3}, and define for j ∈ J , gj : RL ×R −→ R by

gj (x, a) =


−xj if j ∈ {1, ..., L}
−a if j = L+ 1
a− a if j = L+ 2
p · x−m if j = L+ 3

Then, (x∗, a∗) is a solution to the problem

min f (x, a)

s.t. (∀j ∈ J ) : gj (x, a) 6 0
Let K = {j ∈ J | gj (x∗, a∗) = 0}. By monotonicity, L+ 3 ∈ K. Notice that

(x∗, a∗) is a solution to the problem

min f (x, a)

s.t. (∀k ∈ K) : gk (x, a) 6 0
for, if not, there would exist (x0, a0) ∈ RL ×R such that

f (x0, a0) < f (x∗, a∗)

(∀k ∈ K) : gk (x0, a0) 6 0
by construction,

(∀j ∈ J \K) : gj (x∗, a∗) < 0
Now, for each θ ∈ (0, 1), define (xθ, aθ) = θ (x0, a0) + (1− θ) (x∗, a∗). By con-
vexity,

(∀θ ∈ (0, 1)) : f (xθ, aθ) 6 θf (x0, a0) + (1− θ) f (x∗, a∗) < f (x∗, a∗)

However, by continuity of gj , for θ small enough

(∀j ∈ J \K) : gj (xθ, aθ) 6 0

whereas by convexity of gk

(∀k ∈ K) : gk (xθ, aθ) 6 θgk (x
0, a0) + (1− θ) gk (x

∗, a∗) 6 0
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which is a contradiction.
Then, by lemma 3, it follows that ∃α ∈ ∂<f (x∗, a∗) and ∀k ∈ K ∃βk ∈

∂<gk (x
∗, a∗) and ∃γk ∈ R+ such that

α+
X
k∈K

γkβk = 0

Fix k ∈ K. It is obvious that

gk (x
∗, a∗) > inf

RL×R
gk (x, a)

and that every local minimizer of gk is also a global minimizer, so that, by lemma
1, ∂<gk (x∗, a∗) = ∂6gk (x∗, a∗). Moreover, since gk is convex and attains no
minimum at (x∗, a∗), it follows from lemma 2 that

∂6gk (x
∗, a∗) =

[
τ>1

τ∂gk (x
∗, a∗)

and hence, that

(∃ϑk ∈ ∂gk (x
∗, a∗)) (∃τk > 1) : τkϑk = βk

whereas, by its definition,

∂gk (x
∗, a∗) =


{−ek} if k ∈ {1, ..., L}
{−eL+1} if k = L+ 1
{eL+1} if k = L+ 2
{(p, 0)} if k = L+ 3

where, for c ∈ {1, ..., L+ 1}, ec represents the cth canonical unit vector in RL+1.
On the other hand, it follows from monotonicity, and the fact that m > 0,

that
f (x∗, a∗) > inf

RL+×[0,a]
f (x, a)

whereas by convexity, every local minimizer of f is also a global minimizer.
Then, by lemma 1, ∂<f (x∗, a∗) = ∂6f (x∗, a∗). Also, since f is convex and
attains no minimum at (x∗, a∗), it follows from lemma 2 that

∂6f (x∗, a∗) =
[
κ>1

κ∂f (x∗, a∗)

and hence, that
(∃ζ ∈ ∂f (x∗, a∗)) (∃κ > 1) : κζ = α

Now, suppose that for bl ∈ {1, ..., L}, ζbl > 0. Then, define x by
xl =

(
x∗l for l ∈ {1, ..., L} \

nblo
x∗l +∆ for l = bl
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For ∆ > 0, by monotonicity, f (x, a∗) < f (x∗, a∗), whereas

ζ · ((x, a∗)− (x∗, a∗)) > 0

contradicting the fact that ζ ∈ ∂f (x∗, a∗).
Define and partition:

(υ, ρ) = −ζ

(ς∗, 0) =

½
− 1

κ

P
k∈K∩{1,...,L} γkτkϑk if K ∩ {1, ..., L} 6= ∅

0 otherwise

(0L, µ
∗) =

½
− 1

κγL+1τL+1ϑL+1 if L+ 1 ∈ K
0 otherwise

(0L, η
∗) =

½
1
κγL+2τL+2ϑL+2 if L+ 2 ∈ K

0 otherwise

where ν ∈ RL++, ς∗ ∈ RL+, 0L = (0)Ll=1 ∈ RL and µ∗, η∗ ∈ R+. Define also
λ∗ = γL+3.
Since

−α =
X
k∈K

γkβk

it follows that

υ = λ∗p− ς∗

ρ = η∗ − µ∗

By monotonicity, there exists bl ∈ {1, ..., L} with pbl > 0 and x∗bl > 0. By con-

struction, bl /∈ K, so that ς∗bl = 0, and, therefore, λ∗ ∈ R++.
By construction,

(∀l ∈ {1, ..., L}) : x∗l > 0 =⇒ l /∈ K =⇒ ς∗l = 0

from where ς∗ ·x∗ = 0. Similar analysis implies that µ∗a∗ = 0 and η∗ (a− a∗) =
0.
Finally, notice that, by definition,¡
∀ (x, a) ∈ RL+ ×

£
0, a
¤¢
: ζ · ((x, a)− (x∗, a∗)) 6 f (x, a)− f (x∗, a∗)

and, therefore,¡
∀ (x, a) ∈ RL+ ×

£
0, a
¤¢
: (υ, ρ) · ((x, a)− (x∗, a∗)) > V (x, a)− V (x∗, a∗)

or, equivalently,¡
∀ (x, a) ∈ RL+ ×

£
0, a
¤¢
: V (x, a) 6 V (x∗, a∗) + v · (x− x∗) + ρ (a− a∗)

Moreover, notice that if V is strongly concave, f is strongly convex and, there-
fore, if there exists (x, a) ∈ RL+ ×

£
0, a
¤
\ {(x∗, a∗)} such that

ζ · ((x, a)− (x∗, a∗)) = f (x, a)− f (x∗, a∗)
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then, defining

(x0, a0) =
1

2
(x, a) +

1

2
(x∗, a∗) ∈ RL+ ×

£
0, a
¤

one gets that

ζ · ((x0, a0)− (x∗, a∗)) =
1

2
ζ · ((x, a)− (x∗, a∗))

=
1

2
(f (x, a)− f (x∗, a∗))

=
1

2
f (x, a) +

1

2
f (x∗, a∗)− f (x∗, a∗)

> f (x0, a0)− f (x∗, a∗)

contradicting the fact that ζ ∈ ∂f (x∗, a∗). Hence, it follows that¡
∀ (x, a) ∈

¡
RL+ ×

£
0, a
¤¢
\ {(x∗, a∗)}

¢
:

ζ · ((x, a)− (x∗, a∗)) < f (x, a)− f (x∗, a∗)

and therefore that¡
∀ (x, a) ∈

¡
RL+ ×

£
0, a
¤¢
\ {(x∗, a∗)}

¢
:

V (x, a) < V (x∗, a∗) + v · (x− x∗) + ρ (a− a∗)

7 Appendix: Tarski-Seidenberg quantifier elim-
ination.

Some of the logical statements in the paper contain existential quantifiers on un-
observed (and even unobservable) variables of their models. Although modern
computational algorithms have proven useful to deal with this kind of situation,
from a purely theoretical perspective it is convenient to argue that these quanti-
fiers can be eliminated and to obtain as much information as possible regarding
equivalent statements that are free of quantifiers. This section takes concepts
from Mishra (1993).

Definition 12 A function µ : RK −→ R, where K ∈ N, is a (Real) Multivariate
Monomial if there exists {αk}Kk=1

seq

⊆ N ∪ {0} such that for every x ∈ RK ,

µ (x) =
KY
k=1

xαki

The degree of the monomial is

deg (µ) =
KX
k=1

αk
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Definition 13 A function ρ : RK −→ R, where K ∈ N, is a (Real) Multivariate
Polynomial if for some M ∈ N, there exist Multivariate Monomials©

µm : RK −→ R
ªM
m=1

and {am}Mm=1
seq

⊆ R\ {0} such that,

ρ =
MX
m=1

amµm

The degree of the polynomial is

deg (ρ) = max
m∈{1,...,M}

{deg (µm)}

Definition 14 A set A ⊆ RK , where K ∈ N, is a semialgebraic set if it can be
determined by a set theoretic expression of the form

A =
M[
m=1

Nm\
n=1

©
x ∈ RK

¯̄
sgn

¡
ρm,n (x)

¢
= sm,n

ª
where for each m ∈ {1, ...,M}, M ∈ N and each n ∈ {1, ..., Nm}, Nm ∈ N,
ρm,n : RK −→ R is a Multivariate Polynomial and sn,m ∈ {−1, 0, 1}.

Definition 15 A function η : A −→ B, where A ⊆ RKA and B ⊆ RKB are
semialgebraic sets (KA,KB ∈ N), is a semialgebraic map if its graph,

Graph (η) =
©
(x, y) ∈ RKA ×RKB

¯̄
y = η (x)

ª
is semialgebraic.

Theorem 10 (The Tarski-Seidenberg Theorem:) Let A ⊆ RK , where K ∈ N,
be a semialgebraic set and let η : RK −→ RK0

, where K0 ∈ N, be a semialgebraic
map. Then,

η [A] =
n
y ∈ RK0

¯̄̄
(∃x ∈ A) : η (x) = y

o
is a semialgebraic set.

Proof. This is theorem 8.6.6 in Mishra (1993), pp. 345.

Corollary 3 Let A ⊆ RK1 × RK2 , where K1,K2 ∈ N, be a semialgebraic set
and let

−→
A1 be its projection into RK1 , defined as

−→
A1 =

©
x ∈ RK1

¯̄ ¡
∃y ∈ RK2

¢
: (x, y) ∈ A

ª
Then,

−→
A1 is semialgebraic.
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Proof. Define the function η1 : RK1 ×RK2 −→ RK1 by

η1 (x, y) = x

Its graph, G (η1) =
¡
RK1 × RK2

¢
× RK1 is clearly semialgebraic. Since A is

semialgebraic, it follows from the Tarski-Seidenberg theorem that©
x ∈ RK1

¯̄
(∃ (x0, y) ∈ A) : η1 (x

0, y) = x
ª

=
©
x ∈ RK1

¯̄
(∃ (x0, y) ∈ A) : x0 = x

ª
=

©
x ∈ RK1

¯̄ ¡
∃y ∈ RK2

¢
: (x, y) ∈ A

ª
=
−→
A1

is semialgebraic.
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